
Verifying That Web Pages Have Accessible Layout

Pavel Panchekha Adam T. Geller Michael D. Ernst Zachary Tatlock Shoaib Kamil
pavpan@cs.uw.edu atgeller@uw.edu mernst@cs.uw.edu ztatlock@cs.uw.edu kamil@adobe.com

Paul G. Allen School of Computer Science and Engineering Creative Intelligence Lab
University of Washington, Seattle, WA, USA Adobe Research, NY, USA

Abstract

Usability and accessibility guidelines aim to make graphical
user interfaces accessible to all users, by, say, requiring that
text is sufficiently large, interactive controls are visible, and
heading size corresponds to importance. These guidelines
must hold on the infinitely many possible renderings of a
web page generated by differing screen sizes, fonts, and other
user preferences. Today, these guidelines are tested by man-
ual inspection of a few renderings, because 1) the guidelines
are not expressed in a formal language, 2) the semantics of
browser rendering are not well understood, and 3) no tools
exist to check all possible renderings of a web page. Viz-
Assert solves these problems. First, it introduces visual logic
to precisely specify accessibility properties. Second, it for-
malizes a large fragment of the browser rendering algorithm
using novel finitization reductions. Third, it provides a sound,
automated tool for verifying assertions in visual logic.
We encoded 14 assertions drawn from best-practice ac-

cessibility and mobile-usability guidelines in visual logic.
VizAssert checked them on on 62 professionally designed
web pages. It found 64 distinct errors in the web pages, while
reporting only 13 false positive warnings.

CCSConcepts · Software and its engineering→Graph-

ical UI languages; Software maintenance tools;

Keywords accessibility, usability, verification, SMT, layout,
CSS, semantics

ACM Reference Format:

Pavel Panchekha, Adam T. Geller, Michael D. Ernst, Zachary Tat-

lock, and Shoaib Kamil. 2018. Verifying That Web Pages Have Ac-

cessible Layout. In Proceedings of 39th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI’18).

ACM,NewYork, NY, USA, 19 pages. https://doi.org/10.1145/3192366.

3192407

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00

https://doi.org/10.1145/3192366.3192407

1 Introduction

Web page accessibility is imperative for moral and legal rea-
sons. There are over 7.4 million adults with a vision impair-
ment in the USA alone [35]. Other users have sensorimotor
disabilities that restrict their use of input devices. These peo-
ple should have the opportunity to use web pages just as
other people do, but inaccessible web pages lock them out.
GUI designers strive to make their pages accessible by fol-
lowing guidelines, such as those from the Department of
Justice [50] or the W3C’s Web Content Accessibility Guide-
lines [53]. For some applications, adherence to these guide-
lines is mandated by the European Web and Mobile Accessi-
bility Directive [16], the Americans with Disabilities Act [49],
or the Basic IT Law of Japan [15]; other countries also have
such standards. In 2017, at least 814 lawsuits were brought
against web site owners for inaccessible web pages [52].

Usability guidelines are similar: from an accessibility per-
spective a developer may want to ensure that buttons are
large enough for userswith sensorimotor disabilities, whereas
from a usability perspective a developer may want to ensure
that buttons are large enough for users on a mobile device.

Accessibility and usability guidelines must be satisfied on
all of the infinitely many combinations of rendering param-

eters such as screen size, default font sizes, and user pref-
erences. Currently, developers test for adherence to these
guidelines by running the application with a few chosen pa-
rameters and visually searching for violations of design con-
straints, or they use automated pixel-by-pixel comparison
engines such as Selenium, Sikuli, and Raven [9, 13, 17]. These
techniques only consider a particular subset of rendering
parameters and are not sufficient to ensure that applications
are accessible [24, 29, 43, 46]. To verify accessibility requires
checking all possible combinations of rendering parameters.
We introduce VizAssert, a tool for verifying that an as-

sertion about visual layout holds for web pages. Web pages
are a ubiquitous type of user interface for modern applica-
tions. VizAssert takes as input a web page and an assertion
in a formal visual logic, for example a minimum font size
or the visibility and contrast of widgets. VizAssert either
soundly certifies that the assertion is satisfied for all render-
ing parameters in a user-chosen bounded set, or it provides
a counterexample for which the assertion is violated.

VizAssert reasons about web page layout using a formal-
ization of the browser rendering algorithm specified by the

1

https://www.acm.org/publications/policies/artifact-review-badging
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3296979.3192407&domain=pdf&date_stamp=2018-06-11

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA P. Panchekha, A.T. Geller, M.D. Ernst, Z. Tatlock, and S. Kamil

W3C CSS 2.1 standard [54]. The CSS standard describes sev-
eral key features in terms of operations on arbitrary-sized
sets, which are difficult for an SMT solver to reason about.
This prevented previous attempts from formalizing several
ubiquitous aspects of CSS, among them line height computa-
tion, margin collapsing, and floating layout [39]. Our work
introduces novel, sound reductions (finitization reductions)
from the arbitrary-size sets discussed by the standard to a
compact, finite-size representation which is more amenable
to mechanical reasoning. By reducing arbitrary-sized sets to
finite analogs, VizAssert encodes its formalization of browser
rendering to an efficiently-solvable SMT query and uses
Z3 [14] to automatically search for counterexamples to an
assertion or to certify that no counterexamples exist.

1.1 VizAssert’s Input and Output

Web developers wish to ensure that their web pages satisfy
high-level, English-language guidelines. Developers are ea-
ger to fix accessibility issues, but discovering those issues is
too difficult [29, 46]. The developer provides to VizAssert a
web page and a guideline, expressed as a formal assertion in
visual logic.

Figure 1 shows how VizAssert works. Using its formal-
ization of the browser rendering algorithm, VizAssert con-
structs a search problem equivalent to the truth of that asser-
tion. An answer to the search problem is a set of rendering
parameters (that is, a set of browser preferences) such that
the rendering violates the assertion. VizAssert encodes this
search problem into a formula in the quantifier-free theory
of linear real arithmetic (QFLRA), and invokes an SMT solver
to decide the search problem.
VizAssert outputs łverifiedž if no rendering parameters

can be found that cause a violation of the assertion. The
assertion provably holds for all considered rendering param-
eters. VizAssert outputs łviolatedž if the search problem is
solvable. VizAssert also outputs a counterexample that iden-
tifies a set of boxes on the page and values for the rendering
parameters (window size, font size) for which the assertion
is violated. The developer can examine the counterexample
in a browser to confirm the error and then modify the page
to fix it.

The errors VizAssert detects are not crashes or exceptions.
The lack of notifications makes developers more likely to
overlook accessibility failures. This makes verification tools
like VizAssert especially valuable.

1.2 Case Studies

This paper considers 14 accessibility guidelines and best prac-
tices (Table 1). They all represent real concerns for designers,
but the particular set is less important than the fact that
VizAssert is general and extensible.

We formalized each accessibility guideline in visual logic
and checked them on a collection of 62 professionally de-
signed web pages. Section 3 discusses the adaptations and

§

VizAssert

Visual Logic

Assertion
HTML+CSS

Assertion

QFLRA

(SMT)
3

§ 4

Accessibility

Guidelines

Table 1

Web

Pages

finitization

reduction

§ 2

Figure 1. VizAssert ensures that web pages satisfy acces-
sibility guidelines. VizAssert transforms those assertions,
expressed in visual logic, into properties of the HTML and
CSS source of the web page, then encodes those properties
to formulas in the quantifier-free theory of linear real arith-
metic.

Table 1. Best-practice accessibility and usability guidelines
that we formalized in visual logic and evaluated on profes-
sionally designed web pages (Section 5). Appendix B formal-
izes each guideline.

Description Source

General assertions, applicable to many web pages

1 Text is at least 14px tall [53]

2 Text can be resized by up to 200% [53]

3 Lines are no more than 80 characters [53]

4 Elements for screen-reader users are off-screen [34, 41]

5 The page does not require horizontally scrolling [8]

6 Headings form a visual hierarchy [38]

7 Text does not overlap [2]

8 Lines are appropriately spaced [7]

Specific assertions, applicable to a single web page

9 Text has sufficient contrast [1, 53]

10 Text does not overlap image [1, 53]

11 Dropdown menus are hidden when not selected [56]

12 Columns are vertically aligned [7]

13 Full link text is visible [2]

14 Main button is big enough [48]

choices necessary to turn informal guidelines and best prac-
tices into formal assertions. 6 of the assertions are page-
specific, demonstrating that users can write custom asser-
tions to verify domain-specific properties of their web pages.
In all, there are 502 combinations of web page and assertion.
Of these, VizAssert found 64 assertion violations, and issued
13 false positive warnings.

1.3 Contributions

In summary, this paper’s contributions are:

• Visual logic, a language to express visual layout prop-
erties (Section 3), including the 14 accessibility and
usability guidelines in Table 1.

• An efficient formalization of many crucial components
of the browser rendering algorithm. For space reasons,
this paper highlights three of themÐline height (Sec-
tion 4.1), margin collapsing (Section 4.2), and floating

2

Verifying That Web Pages Have Accessible Layout PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

layout (Section 4.3)Ðthat utilize a key implementation
tactic (finitization reductions).

• An open-source implementation, VizAssert (https://
cassius.uwplse.org/), that automatically verifies a vi-
sual assertion for a web page, or produces a counterex-
ample user configuration for which the assertion is
violated.

• An evaluation of VizAssert on 62 professionally de-
signed web pages, identifying 64 errors with only 13
false positives (Section 5).

2 Background

This section describes the W3C browser rendering algo-
rithm [54], which turns HTML and CSS into a tree of boxes
annotated with colors, sizes, and positions. VizAssert’s for-
malization of a subset of this rendering algorithm is based
on and significantly extends that of Cassius [39]. The most
noteworthy extensions are described in Section 4.

HTML HTML defines elements and text. Each element has
a tag name, and text is placed within and between elements.
For example, the following HTML represents 4 elements
(with tags html, body, b, and button) and four pieces of text:

<html><body>This is formatted text

and a <button>button</button></body></html>

Some HTML elements, like the button element, are specially
interpreted by the browser and rendered with browser- or
OS-specific methods. Most other elements have no special
behavior: browsers provide a default CSS file to ensure that,
for example, text inside a b-tagged element is bold. It is this
default CSS file, not something intrinsic to the b tag, that
causes the text to render in bold.

CSS A CSS file defines a sequence of rules. Each rule selects
certain elements and then sets the values of various properties
on those elements. The following CSS file contains two rules:

body { margin: .5em; }

b { font-weight: bold; }

The first rule selects elements with the body tag and sets
theirmargin property. The second rule selects elements with
the b tag and sets their font-weight property. CSS also allows
selecting elements by their relationship to other elements or
by attributes attached to those elements. If two applicable
rules conflict, the rule with the most specific selector is used.

Rendering The browser combines the HTML and CSS to
produce a rendering: a box tree containing all of the page’s
visual elements. The browser uses the rendering parameters,
including the height and width of the browser window and
the user’s preferred font size, as inputs to this rendering
process. Numerous browser subsystems interact to render
HTML and CSS (Figure 2):

• Selectors are matched to elements to find the values speci-
fied for every CSS property for every element.

Cascade

Shrink-to-fit

Box Types Layout Mode

Horizontal

Vertical

Height

§ 4.3

§ 4.1

Clearance

Floating

Layout

Line

Height

Margin

Collapse

Flow

Width

Selectors

§ 4.2

In Cassius

Styles

Figure 2. Themajor subsystems of VizAssert’s formalization
of web page layout. Each component is described briefly in
Section 2. Many details, such as VizAssert’s handling of color,
media queries, and width and height bounds, are hidden in
this picture, which shows only the highest-level components.
Components outside the shaded area are newly formalized
in this work.

• Cascading determines which rule’s value to use when
multiple rules apply to one element.

• Styles are computed for each element, resolving references
and relative values in the specified CSS values.

• Box types are determined for each box using the computed
value of the display property.

• Layout modes are selected for each box using the com-
puted values of the display, float, and position properties,
plus the box type.

• Horizontal widths and positions are computed for boxes.
This computation is different for different layout modes.

• Flow widths are used for most boxes, computed from their
width value and the width of their containing box.

• Shrink-to-fit widths are used instead for boxes whose
width value is auto and which use certain layout modes.

• Vertical positions are computed for boxes based on the po-
sitions of previous boxes and, in some cases, the positions
of floats.

• Heights are computed for most boxes based on the posi-
tions and sizes of their contents.

• Line heights, for lines of text, are computed separately,
using information about the size of fonts and details of
text layout described in Section 4.1.

• Margins sometimes collapse, allowing adjacent vertical
margins of boxes to overlap, following rules discussed in
Section 4.2.

• Clearance is determined for elements whose clear prop-
erty is set. Clearance moves those elements so that they
do not have a floating box beside them.

• Floating layout allows elements to move to the right or
left of their parent and have text wrap around them. Sec-
tion 4.3 describes this subsystem.

3

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA P. Panchekha, A.T. Geller, M.D. Ernst, Z. Tatlock, and S. Kamil

⟨assertion⟩ ::= ∀b1, . . . ∈ B : ⟨cond⟩

⟨cond⟩ ::= ⟨cond⟩ ∧ ⟨cond⟩ | ¬ ⟨cond⟩ | ⟨cond⟩ ∨ ⟨cond⟩

| ⟨real⟩ = ⟨real⟩ | ⟨real⟩ < ⟨real⟩ | ⟨real⟩ > ⟨real⟩

| ⟨box⟩ = ⟨box⟩ | ⟨box⟩.type = ⟨type⟩ | ⟨box⟩.whitespace

⟨real⟩ ::= R | ⟨real⟩ + ⟨real⟩ | ⟨real⟩ − ⟨real⟩ | R × ⟨real⟩

| ⟨box⟩.⟨dir⟩ | ⟨color⟩.r | ⟨color⟩.g | ⟨color⟩.b

⟨color⟩ ::= transparent | rgb(⟨real⟩, ⟨real⟩, ⟨real⟩)
| ⟨box⟩.fg | ⟨box⟩.bg | γ (⟨box⟩.fg) | γ (⟨box⟩.bg)

⟨box⟩ ::= bi | root | null | ⟨box⟩.ancestor(⟨cond*⟩)
| ⟨box⟩.parent | ⟨box⟩.first-child | ⟨box⟩.last-child
| ⟨box⟩.next | ⟨box⟩.prev

⟨type⟩ ::= window | inline | line | text | block

⟨dir⟩ ::= top | right | bottom | left

Figure 3. Visual logic, a language for formally describing
visual layout properties. All quantifiers are over the set B of
boxes in a rendering.

Once the size and position of every box is known (as well
as colors and other miscellaneous properties), the web page
can be drawn to the screen.

3 Visual Logic

Visual logic expresses accessibility and usability assertions
in formal and unambiguous terms. This is the input to Viz-
Assert.

3.1 Core Visual Logic

Visual logic expresses properties of a visual layout. Visual
logic allows quantified formulas over a simple expression
language with conditional values, real numbers, boxes, and
colors (Figure 3). These formulas describe properties of a
tree of rectangular boxes.
Most visual logic constructs are straightforward (and de-

scribed in more detail in Appendix A). Some domain-specific
constructs include:

• Assertions are universally quantified over boxes łbi ž.
• ł⟨box⟩.type = ⟨type⟩ž checks the type of a box, which
defines the sort of content the box contains.

• ł⟨box⟩.whitespacež determineswhether a text box con-
tains only whitespace or also contains other text.

• The ł⟨box⟩.⟨dir⟩ž construct expresses the position of
the box’s edges (and thus the box’s position and size).

• The γ function gamma-corrects RGB colors.
• A box’s siblings, children, and parent are accessible
through its previous, next, parent, first-child, and last-
child fields, which can have a null value.

Visual logic makes several design choices to enable effi-
cient reasoning with an SMT solver. We did not find any

assertions that we were unable to formalize due to these
limitations. (1) Since SMT solvers can only efficiently reason
about linear real arithmetic, multiplications must involve a
constant. (2) Visual logic allows only universally-quantified
queries, because these correspond to quantifier-free queries
to the SMT solver. (3) SMT solvers cannot reason about recur-
sive properties, so visual logic provides the ancestor function,
which represents the closest ancestor of a box that satisfies
a conditional expression in one variable (written ł?ž). If no
ancestor satisfies the ancestor condition, the null box is re-
turned. For example, łb .ancestor(?.bg , transparent).bgž
refers to the background color of the nearest ancestor of b
whose background isn’t transparent. Formally,

null.ancestor(C) = null

b .ancestor(C) = b if C[?/b] else b .parent.ancestor(C)

Evaluating a visual logic assertion on a concrete rendering
of a GUI is straightforward. Searching the infinite set of all
possible renderings for a counterexample to the assertion is
more challenging (see Section 4).

3.2 Visual Logic for the Web

Visual logic formalizes properties of visual layouts for any
platform that structures graphical interfaces as a tree, such
as HTML and CSS, Swing [19], Cocoa [3], or Android [42].
Adapting visual logic to one of these platforms involves
adding platform-specific constructs to visual logic. Since this
paper focuses on the accessibility of web pages, it special-
izes visual logic for the web platform by adding support for
selectors and the CSS box model.

Selectors Visual logic for the web contains a conditional
expression to determine whether a box is generated by an
element that matches a given CSS selector [54]:

⟨cond⟩ ::= · · · | ⟨box⟩ ∈ $(⟨selector⟩)

For example, łb ∈ $(h1, h2)ž evaluates to true if b is the
box of a first- or second-level heading. Adaptations of visual
logic to other platforms could add analogous concepts, such
as access to Swing component names, Cocoa viewIDs, or
android:ids on Android.

Box model Visual logic for the web supports references
to the position of the content, padding, border, and margin
edges of a box, with the border edge as the default.

⟨real⟩ ::= · · · | ⟨box⟩.⟨dir⟩[⟨edge⟩]

⟨edge⟩ ::= margin | border | padding | content

For example, the conditional expression łb1.top[margin] =

b2.top[margin]ž evaluates to true if b1’s and b2’s margin bor-
ders are aligned at the top.

4

Verifying That Web Pages Have Accessible Layout PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

3.3 Formalizing Assertions

Two broad challenges must be overcome to translate infor-
mal, English-language guidelines to assertions in visual logic:
precisely identifying the page elements discussed by the
guideline and translating high-level design concepts to con-
crete visual properties. To illustrate each, we use a represen-
tative assertion from the list in Table 1. Appendix B presents
the formalizations of all 14 assertions.

Identifying relevant elements Users who are partially or
fully blind often navigate the web using a screen-reader.
Content intended solely for such users is often positioned
off-screen, where sighted users will not see it. Assertion #4,
łelements for screen-reader users are off-screenž requires
that these elements stay off-screen.

∀b ∈ B : for_screenreader(b) =⇒ ¬onscreen(b)

The screen is represented by the root box:

onscreen(b) := b .right ≥ root.left ∧ b .bottom ≥ root.top

The majority (38) of the 62 evaluation pages featured so-
cial sharing buttons1 implemented by setting those buttons’
background-image property to those social networks’ logos.
Since background images are not accessible to blind users,
these pages also included text naming the service, but posi-
tioned this text off-screen.

for_screenreader(b) :=

b .type = text ∧ is_descendant(b, #S)

where S names a social service. The is_descendant function
is a variant of ancestor:

is_descendant(b, S) := b .ancestor(? ∈ $(S)) , null

Concretizing design concepts Web designers use visual
details, like size or spacing, to suggest to sighted users which
content on the page is more or less important. Users who
browse the web with a screen-reader instead read the hierar-
chical heading tags h1śh6, where smaller numbers describe
more important content. However, web page developers can
change the appearance of these tags, making screen-reader
users and sighted users perceive a different hierarchy of im-
portance in page content. Assertion #6, łHeadings must form
a visual hierarchyž, checks that no such misuse occurs.

∀b1,b2 ∈ B : in_header(b1) ∧ in_header(b2)∧

header_level(b1) < header_level(b2) =⇒

visual_importance(b1) > visual_importance(b2)

1Twitter, Facebook, YouTube, Vimeo, Flickr, LinkedIn, Pinterest, Google+,

and RSS buttons were present in our evaluation set.

fg fg Baseline

½ Leading

½ Leading

Descent

Ascent

Line

height

Figure 4. Line height is computed by aligning all text in the
line to a common baseline and finding the maximum ascents
above and descents below the baseline, including blank space
above and below the text called leading.

We used text height to establish visual importance on the
evaluation pages: visual_importance(b) := b .height. Select-
ing headings is done using is_descendant:

in_header(b) := b .type = text ∧ ¬b .whitespace ∧

(is_descendant(b, h1) ∨ descendant(b, h2) ∨ · · ·)

Once a heading is selected, its level can be computed from
its tag name:2

header_level(b) := if is_descendant(b, h1) then 1 else . . .

Though identifying relevant elements and concretizing
design concepts can be challenging is some cases (see Ap-
pendix B), visual logic provides an expressive language for
formalizing accessibility and usability guidelines.

4 Formalization of Browser Rendering

VizAssert uses a formalization of theW3C browser rendering
algorithm to determine all possible renderings of a web page,
given its source code (CSS & HTML). This formalization
builds upon earlier work and contains many advancements
to support realistic web pages (see Section 7.1). This sec-
tion describes a central aspect of these advances: a novel
application of finitization reductions. A finitization reduction
reduces reasoning about an arbitrary-size set to equivalent
reasoning about a finite data structure. VizAssert uses fini-
tization reductions to formalize line height computation,
margin collapsing, and floating layout.

4.1 Line Heights

In English text, letters are vertically aligned to a baseline.
On the web, a line of text may mix text of different fonts
and sizes, and also images and special inline-block boxes.
Web designers may also control the size of the gap between
successive lines of text with the line-height CSS property.3

The CSS standard requires the browser rendering algo-
rithm to minimize the height of the line while aligning all

2Visual logic expands if statements and other standard shorthands to the

primitive operators of Figure 3; see Appendix A.
3Despite its name, the line-height property does not directly set the height

of the line box; instead, it sets the leading. When a line contains images,

inline-block boxes, or inline boxes with a different line-height, it can have

a different line height than its line-height.

5

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA P. Panchekha, A.T. Geller, M.D. Ernst, Z. Tatlock, and S. Kamil

text and images in that line to a common baseline and while
leaving blank space, called leading, above and below the
text (Figure 4).4 The foregoing description of line height is
not amenable to mechanical reasoning. First, it introduces
nested quantifiers by reasoning about the space of possible
line heights. Second, it describes the set of all objects in a
line, a set too complex for efficient mechanical reasoning.
VizAssert uses a more efficient description of line heights.

Since each object in the linemust be aligned to the baseline,
the height of the line must be the highest an object rises
above the baseline plus the deepest an object falls below it
(plus leading). VizAssert computes the highest an object rises
above the baseline with a running maximum (and similarly
for the deepest an object falls below the baseline):

above_baseline(b) :=

max

ascent(b) + 1
2 leading(b)

above_baseline(b .prev) if b .prev , null

above_baseline(b .last) if b .last , null

The first argument tomax is the size of the current box (above
the baseline); the others pass the above_baseline value left
to right along the line and up from children to parents, thus
incorporating every box in the line. VizAssert thus reduces
line height reasoning to just two values: above_baseline and
the symmetric below_baseline.

4.2 Margin Collapsing

In CSS, every box has a margin: an area outside the box
that other boxes may not intrude into.5 For most boxes, ver-
tical margins are allowed to overlap if adjacent; Figure 5
demonstrates two margin-collapsing situations. Note that a
child’s margin may collapse with its parent’s, and that the
top and bottom margins of zero-height boxes collapse. Due
especially to these complex forms of margin collapsing, the
set of margins that collapse together may be quite large.
The CSS 2.1 standard describes margin collapsing by de-

scribing the conditions under which a pair of margins col-
lapse. Any łconnected componentž of margins collapses to-
gether, and the total margin size is found by adding the most
positive and most negative margins in that group. Reasoning
about a large set of margins, let alone a set defined by a graph
reachability criterion, would be beyond the capabilities of
a modern SMT solver. VizAssert thus uses a finitization re-
duction that replaces the set of collapsed margins by a finite
description. VizAssert tracks, instead of the set of collapsed
margins, a running maximum of margins seen so far and
additional information about those margins. However, doing
so for collapsing margins is more complex than the analo-
gous finitization reduction for line height, because it must
confront three key problems.

4 Appendix C.1 reproduces the standard’s specification of line heights.
5This description elidesmany details; in some cases, other boxesmay intrude

into a box margin. Appendix C.2 reproduces the standard’s specification of

margin collapsing.

Figure 5. Adjacent vertical margins collapse, and this figure
visualizes two possibilities. Each possibility shows several
boxes and their margins. Zero-height boxes are represented
by horizontal lines. Each arrow represents a margin (all pos-
itive) and has the same color as the box that generates it.
When a margin determines the location of a box, a circle
is drawn around it. The left figure shows how zero-height
boxes affect margin collapsing; note that the blue bottom
margin is not measured from the bottom of that box because
that margin collapses with the box’s top margin. The right
figure shows a child box’s margin (in black) collapsing with
its parent’s (orange) margin despite being the second sibling
of the parent (the first sibling, in blue, is zero height; space
has been added around it for clarity). The child box’s margin
then collapses with a sibling (green) of that parent.

Positive and negativemargins The browser rendering al-
gorithm considers positive and negative margins separately,
so VizAssert splits the top margin mt into a positive compo-
nent mt+ and a negative component mt−. To track margins
as they collapse together, mt+ is, for any box, the maximum
of the top marginmt (if positive), any positive margins of its
children that collapse with it, and any positive margins of its
previous siblings that collapse with it. Similar accumulations
are used for positive and negative top and bottom margins.

Zero-height first children When a parent’s top margin
collapses with its first child’s, and the first child has zero
height, its margins collapse with its next sibling’s top mar-
gin. This requires propagating information from that next
sibling to that first child. This requires additional mt↑

+
and

mt↑− values: mt↑
+
is equal to mt+ for boxes with non-zero

height, and is equal to the next sibling’s mt↑
+
for boxes with

zero height.

Clearance Some boxes whose clear property is set and
which have a nearby floating box have clearance. A quirk
of the margin collapsing rules declares that if a box of no
height has clearance then its margins, and any it collapses
with, do not collapse with its parent’s bottom margin. An
additional boolean field mb? on each box describes whether
its mb+ and mb− include margins from such boxes, which is
used by the parent to avoid collapsing in those cases.
All told, the finitization reduction for margin collapsing

reduces the set of collapsing margins to six real values (mt+,
mt−, mb+, mb−, mt↑

+
, mt↑−) and the boolean mb?.

6

Verifying That Web Pages Have Accessible Layout PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

4.3 Floating Layout

A floating box is łshifted to the left or right until it touches
the edge of its containing box or another floated elementž [33].
Floating layout is commonly used to implement sidebars,
figures, and menus. Floating layout is particularly challeng-
ing and VizAssert’s formalization is, as a result, particularly
novel. To formalize floating layout, VizAssert reduces the set
of all preceding floating boxes to a data structure called an
exclusion zone. These exclusion zones have minimal canon-
ical forms whose compact size makes them an attractive
choice for representing floating layout. VizAssert bounds
the size of the canonical forms, allowing an SMT solver to
use them to compute the positions of floating boxes. Bound-
ing the size of canonical forms is sound: whenever VizAssert
adds to a canonical form, it tests whether the bound is hit;
if so, VizAssert reruns the verification with a larger bound.
Bounding the size of canonical forms is also complete, since
no canonical form can be larger than the number of floating
boxes on a page.

4.3.1 Floating Layout Semantics

In simple cases, a floating box moves to the left or right edge
of its containing box and text wraps around it. However,
the rules for positioning multiple floating boxes are quite
complex. Floating layout is used for any box whose float

property is set, unless its position property is set to absolute
or fixed, in which case the box instead uses positioned lay-
out. Appendix C.3 reproduces the standard’s specification of
floating layout.

The CSS standard describes the positions of floating boxes
with nine rules: seven properties that the position must sat-
isfy and two optimization criteria that select among multiple
options. For automated reasoning, these rules must be trans-
lated to logical formulas that an SMT solver can reason about
efficiently. The challenge is two-fold: first, the rules describe
relationships that must hold for all pairs of floating boxes,
which leads to too many constraints to efficiently solve; and
second, encoding the optimization criteria introduces quan-
tifiers, which moves the constraints beyond the capabilities
of current SMT solvers. Because of these problems, previous
work [39] only allowed restricted uses of floating layout. In
contrast, VizAssert supports the full semantics of floating
layout using a novel formalization of floating layout based
on the exclusion zone data structure.

4.3.2 Exclusion Zones

Laying out a floating box requires knowledge about previous
floating boxes. An exclusion zone summarizes this informa-
tion:

• Top and bottom edges of previous floating boxes;
• Right edges of previous left-floating boxes; and
• Left edges of previous right-floating boxes.

A A

A B

y1 y2

y3

c1 c2

c3

Figure 6. A left-floating boxes is laid out in the topmost,
leftmost position outside an exclusion zone. Here, the blue
boxes labeled łAž are left-floating children of their parent,
whose left and right edges are shown. The resulting exclusion
zone is all points above (and left of) the green dotted line,
which is used to determine the placement of the orange box
labeled łBž. Formally, the exclusion zone would be a triple
({y1,y2,y3}, {c1, c2, c3}, ∅) or, equivalently, ({y3}, {c3}, ∅).

This summarization forms a triple (Y ,L,R), where Y is the
set of y positions of margin top edges of previous floating
boxes, L is the set of the coordinates of bottom-right margin
corners of previous left floats, and R is the set of the coordi-
nates of bottom-left margin corners of previous right floats.
Together, this information describes a region of the screen
where a floating box cannot be placed: a box p is excluded
from (Y ,L,R) when, for some y ∈ Y , ℓ ∈ L, and r ∈ R,

p.y < y ∨ (p.x < ℓ.x ∧ p.y < ℓ.y) ∨ (p.x > r .x ∧ p.y < r .y)

Figure 6 shows the exclusion zone used to lay out a floating
box on a web page.
Given the exclusion zone, it is possible to compute the

position of a floating box using the box’s width w , its con-
taining block p, and the position y∗ the box would have if it
were laid out with block flow layout. Given this information,
the box is then placed such that its margin top edge is at
or below y∗, its top corners are not in the exclusion zone,
and its top corners are within the containing block (with
exceptions for boxes wider than their containing block or of
negative width). This leads to an efficient SMT encoding. For
example, the following formula constrains y to ensure that
both top corners are not in the exclusion zone when the box
has positive width but is not wider than its containing block.

0 ≤ w ≤ p.width[content] =⇒ w ≤ r − ℓ

r = min{xr | (xr ,yr) ∈ R ∧ y < yr }

ℓ = max ({xl | (xl ,yl) ∈ L ∧ y < yl } ∪ {p.left[content]})

Similar formulas handle the other two cases and the x po-
sition.

The formula above is a property the y position must have.
To determine the concrete y position, VizAssert uses the
fact that the y position must be a member of Y ∪ {y∗} and

7

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA P. Panchekha, A.T. Geller, M.D. Ernst, Z. Tatlock, and S. Kamil

simply tries them in increasing order, to satisfy CSS 2.1’s
rules that are optimization criteria. Similarly, the x position
must (for a left float) be a member of {xl | (xl ,yl) ∈ L} ∪

{p.left[content]}.

4.3.3 Canonical Forms

Two exclusion zones may be equivalentÐthey may exclude
the same set of points. For example,

e = ({0}, {(0, 1), (1, 1)}, {}) and e ′ = ({0}, {(1, 1)}, {})

differ in their L component but exclude the same set of points:

(x ,y) ∈ e ⇔ (x ,y) ∈ e ′ ⇔ y < 0 ∨ x < 1 ∧ y < 1

A compact canonical form can be computed:

Theorem 4.1. Every exclusion zone (Y ,L,R) has a canonical
form (Y ∗,L∗,R∗), such that:

• (Y ∗,L∗,R∗) is equivalent to (Y ,L,R);

• equivalent exclusion zones have identical canonical forms;

• among exclusion zones (Y ′,L′,R′) equivalent to (Y ,L,R),

the canonical form minimizes |Y ′ | + |L′ | + |R′ |.

Proof. We construct the canonical form explicitly.Y ∗ is empty
if Y is empty and otherwise is the singleton set

Y ∗
= {max(Y ∪ Y ′)}

Y ′
= {min{yl ,yr } | (xl ,yl) ∈ L ∧ (xr ,yr) ∈ R ∧ xl > xr }

L∗ is the maximal subset of L such that

(x ,y) ∈ L∗ =⇒
∧

(x ′
,y′)∈L

(x ,y) = (x ′
,y ′) ∨ x > x ′ ∨ y > y ′

R∗ is analogous. Checking the three properties given for
canonical forms is mechanical. □

Example 4.1. Floating boxes are frequently used to lay out

vertically-aligned items in toolbars and menus. Suppose that

the page width is w > ℓ, and consider a layout containing

ℓ left-floating boxes, all of size 1 × 1. The exclusion zone is

({0}, {(1, 1), (2, 1), . . . (ℓ, 1)}, ∅). This exclusion zone is equiv-

alent to the canonical exclusion zone ({0}, {(ℓ, 1)}, ∅).

Because exclusion zones have compact canonical forms,
VizAssert can set a bound k on their size; |L|, |R | ≤ 5 suf-
fices for most web pages. Bounding exclusion zones to k

elements raises the challenge of picking a sufficiently large
k . VizAssert circumvents this problem by asserting, on ev-
ery addition of a box to an exclusion zone, that the chosen
bound suffices to represent the combined exclusion zone. If
this assertion fails for any addition to an exclusion zone, the
query is retried with more registers. Since it is sufficient to
use as many registers are there are floating boxes on the
page, this process will always terminate.

4.3.4 Implementation Using Triples

VizAssert requires an efficient SMT encoding of exclusion
zones, including efficient operations for finding the correct
position of a floating box and adding a floating box to an
exclusion zone.

To compute the position of a float given an exclusion zone
(Y ,L,R), it is important to first find the float’s y position,
which is the minimal y position where the float will fit. This
requires iterating through L and R together and in order of
increasing y. To avoid encoding a sort and merge operation
in an SMT formula, L and R are stored together. To do so,
L and R are stored as a size-k set of triples (y, ℓ, r), where
each triple represents (ℓ,y) ∈ L and (r ,y) ∈ R. These triples
are stored in order of increasing y value, and ℓ (or r) may
be missing if L contains no points with y-position greater
than y. This encoding allows easily iterating through L and
R in order of increasing y. Further, at (y, ℓ, r), the available
horizontal space for a floating box is simply r − ℓ, making it
easy to choose the correct vertical position for a new float.

Besides the triples (y, ℓ, r), the set Y must also be encoded.
Since VizAssert uses canonical exclusion zones, Y is a sin-
gleton set that can be stored directly. When a new float is
added to an exclusion zone, Y is updated to the maximum of
the current element of Y and the new float’s top edge. Values
in L and R whose y position is less than the new float’s top
edge must also be removed. This is easy since L and R are
stored in sorted order as triples (y, ℓ, r).
The triple-based encoding significantly shrinks the size

of the SMT formulas that define exclusion zone operations
and avoids encoding inefficient operations such as sorting
and merging. As a further tweak to this encoding, VizAssert
allows łredundant triplesž, which are two triples whose y
values differ and whose (ℓ, r) are identical. These redundant
triples reduce the size of the SMT formula for adding a float
to an exclusion zone, at the cost of possibly requiring more
registers. We have found that on balance, redundant triples
result in smaller formulas.

4.3.5 Validating the Implementation

The encoding of exclusion zones is complex. Each time Viz-
Assert runs, it proves that its implementation satisfies the
standard’s rules for floating layout, for the current k . If the
proof fails, VizAssert retains soundness by terminating.

For each of the nine rules required of floating layout, the
proof considers the placement of an arbitrary floating box
given an arbitrary exclusion zone. Each rule is proven by
induction over the exclusion zone’s construction: it is proven
for an empty exclusion zone, and proven preserved when a
floating box is added to an exclusion zone. Each case of the
proof is carried out automatically by the SMT solver, since
VizAssert’s implementation of floating layout is a collection
of SMT formulas.

8

Verifying That Web Pages Have Accessible Layout PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

. . . organiz[ing] team runs or [...] for

any team organizing sports . . .
. . . a great fit for any personal health

orientated small business . . .

Figure 7. Two web pages, running and rehabilitation-yoga,
from the FWT suite, and the FWT organizers’ suggested uses
for the templates.

50 100 150 200 250 300 350
0

5

10

Boxes

100 200 300 400 500
0

5

10

15

20

Rules

Figure 8. Histogram of the number of boxes and CSS rules
for the 62 web pages.

We performed a paper proof that the automated proof
always succeeds.

5 Evaluation

VizAssert can verify that realistic web pages satisfy accessi-
bility and usability guidelines. For 62 web pages, VizAssert
determined whether it satisfies the 8 general-purpose asser-
tions described in Section 3. We also ran VizAssert on the 6
page-specific assertions and their corresponding web pages.

5.1 Subject Web Pages

We collected 62 web pages from an online community of web
design professionals that nominates, selects, and publishes
high-quality web pages: FreeWebsiteTemplates (FWT) [20].
The published web pages are written by different developers,
so they cover a cross-section of common web design tech-
niques. See Figure 7 for examples. Novice web developers
use these templates by simply changing the filler text to their
own content, while more knowledgeable developers modify
the published template or extract and reuse components on
their own web pages. Not every web page is expected to pass
every assertion, but failures represent departures from web
design best practices.
We selected web pages by downloading the 100 most re-

cently published FWT web pages, and retaining the the 62

Table 2. Results of verifying accessibility assertions for 62
web pages. T+ and F+ are true and false positives. Over-
all false positive rate was low: 2.6% of all tests and 17% of
counterexamples.

Assertion Verified T+ F+ Timeout

1 text_size 38 18 3 3
2 interactive_onscreen 59 1 1 1
3 line_width 39 18 3 2
4 accessible_offscreen 636
5 no_hscroll 60 1 1
6 heading_size 39 21 2
7 overlapping_text 53 2 5 2
8 line_spacing 59 3

9 contrast 1
10 no_text_on_bg_image 1
11 dropdown_offscreen 1
12 columns_aligned 1
13 visible_text 1
14 button_large 1

Total 388 65 13 11

web pages that fit within the subset of CSS supported by
VizAssert (see Section 6). When templates contained mul-
tiple pages (for example, a main page, an about page, and
a product page) we used only the main page. In aggregate,
the 62 web pages average 78 elements (56ś93 Inter-Quartile
Range), 176 boxes (119ś222 IQR), and 128 rules (89ś145 IQR).
See Figure 8 for histograms of these statistics.

5.2 Results

We ran VizAssert with a timeout of 30 minutes, using a
machine with an i7-4790K CPU, 32GB of memory, and Z3
version 4.5.1. VizAssert verified each assertion for all possible
screen widths 1024ś1920 pixels, screen heights 800ś1080
pixels, and default font sizes 16ś32 pixels. In total, there
were 414 successful verifications, 64 true positives, 13 false
positives, and 11 timeouts (see Table 2).
VizAssert outputs rendering parameters that illustrate a

violation of design guidelines, so most reports are straight-
forward to diagnose and fix. For example, the heading_size
assertion is violated on the page carracing for a 1856 × 800
browser with 16px text (see Figure 9). The assertion requires
more important headings to be larger, but in the page’s side-
bar, section titles (in second-level h2 headings) are rendered
in 14px type, while sidebar links (in third-level h3 headings)
are rendered in a larger 16px font. A single-line change to
the CSS file fixes this problem by increasing the size of h2
headings.

6Verified on all 62 pages, but 13 verifications are vacuous because no screen-

reader elements were identified.

9

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA P. Panchekha, A.T. Geller, M.D. Ernst, Z. Tatlock, and S. Kamil

Figure 9.On the left, a true positive discovered by VizAssert:
the section title, łMiscellaneous Link Onež, is set in smaller
type than subheadings. On the right, a false positive: Viz-
Assert believes that łSALEž can overlap with the date, be-
cause it does not reason about the lack of descenders in the
letters of łSALEž.

As an example of a false positive, VizAssert reports that the
overlapping_text assertion is violated on the sportinggoods
web page for a 1872 × 800 browser with 16px text. The text
does not overlap (see Figure 9), but the text boxes do because
they reserve space for possible descenders. If the text were
łLiquidationž instead of łSALEž then the text would overlap.
VizAssert thus detected a failure of the formal assertion, but
not a failure of the accessibility guideline that the assertion
formalized. VizAssert would need to reason about the shape
of individual letters to avoid this false positive.

VizAssert verifies assertions by transforming them to de-
cidable SMT instances in the theory of quantifier-free linear
real arithmetic. The SMT instances are quite large, as shown
in Figure 10, due to the complexity of the browser render-
ing algorithm. Instance size is largely independent of the
assertion being verified, instead dependent mostly on the
size of the page being verified, since the assertions are small
relative to VizAssert’s formalization of browser rendering.
Proofs of different assertions differ in size, since different
assertions may require more or less global reasoning.
Despite the large instances, VizAssert decided most as-

sertions quickly: only 11 executions out of 502 (2.2%) timed
out in 30 minutes. Figure 10 plots the time to decide each
general-purpose assertion. The line_width assertion takes
significantly longer than the others. We believe that this is
due to the fact that it requires reasoning about the relation-
ship between three different boxes: a line of text, its first
child, and its last child.

5.3 W3C Conformance Tests

VizAssert formalizes novel subsystems of CSS, including the
three discussed in Section 4: line height, margin collapsing,
and floating layout. An incorrect semantics would lead to Viz-
Assert producing false negatives. Luckily, the W3C provides
extensive suites of conformance tests for browser develop-
ers to ensure that their browser correctly implements CSS.
These tests are provided as web pages containing English-
language instructions; to show that VizAssert passes these

488k 770k 1052k
0%

25%

50%

75%

100%
Instance Size (terms)

8k 17k 27k
0%

25%

50%

75%

100%
Proof Size (constraints)

10s 30s 100s 300s 1000s
0%

25%

50%

75%

100%

Time (s; log scale)

Verification time

Assertion #

1 2 3 4

5 6 7 8

Figure 10. CDF of SMT instance and unsat core for each
assertion, and the time required to check satisfiability for
the SMT instances.

tests, we follow Cassius [39] in evaluating VizAssert’s seman-
tics against these tests by comparing VizAssert’s rendering
to Mozilla Firefox’s.7

To ensure the correctness of VizAssert’s implementation
of line height, margin collapsing, and floating layout, we
used all W3C conformance tests for subsections 10.8 and
10.8.1 (line height), 8.3 and 8.3.1 (margin collapsing), and
9.5, 9.5.1, and 9.5.2 (floating layout). Table 3 shows results
for VizAssert and Cassius. VizAssert passes all but 91 tests;
all 91 of these failing tests use unsupported features, most
prominently vertical alignment, right-to-left text, and SVGs,
and thus are out of scope for VizAssert’s semantics. Among
the passing tests are 5 for which VizAssert’s rendering is
different from Mozilla Firefox’s. To verify VizAssert’s cor-
rectness in these four cases, we manually confirmed that
VizAssert’s rendering matches the reference rendering; Fire-
fox’s rendering of these cases is known to be incorrect [59].
To determine whether finitization reductions were im-

portant to achieving an accurate semantics, we compared

7Minute rounding errors sometimes cause Firefox’s rendering of the con-

formance tests to differ from that mandated by the standard by a fraction

of a pixel [39]. We compensate for this in this evaluation by comparing

VizAssert’s semantics to Firefox’s rendering up to an accuracy of a sixth of

a pixel.

10

Verifying That Web Pages Have Accessible Layout PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

Table 3. Conformance tests for the seven sections of the
CSS 2.1 standard relevant to line height, margin collapsing,
and floating layout, all formalized in VizAssert using finiti-
zation reductions. Neither tool failed any tests, but Cassius
left the overwhelming majority unsupported because its lack
of finitization reductions made support for these features
impossible.

Section Title VizAssert Cassius Tests

8.3.0 Margins 318 218 343
8.3.1 Collapsing margins 128 13 133
9.5.0 Floats 184 0 205
9.5.1 Positioning floats 24 0 27
9.5.2 Clearance 60 0 69
10.8.0 Line height 7 1 10
10.8.1 Leading 194 39 219

Total 915 271 1006

VizAssert to a semantics without finitization reductions: Cas-
sius [39]. Due to its lack of finitization reductions, most of
the conformance tests could not be correctly handled by
Cassius.

6 Limitations of VizAssert

CSS is large: dozens of standards totaling thousands of printed
pages, VizAssert supports features to enable verification of
a substantial fraction of web pages, but it omits many lesser-
used features. Some features, such as vertical alignment and
right-to-left text, would only require engineering time to
implement. Other features, such as formalizing tabular lay-
outs, present significant research challenges in understand-
ing browser implementations, developing finitization reduc-
tions, and handling various edge cases.

VizAssert currently handles only HTML and CSS. It would
be an interesting challenge to analyze the JavaScript code
that modifies web pages (testing accessibility over all possi-
ble modifications to the page) or the server-side code that
generates pages (testing accessibility over all possible page
contents). Temporal operators could be added to visual logic
to express accessibility properties for dynamic code [21]. Viz-
Assert could be combined with other tools to achieve this.
For example, to verify JavaScript’s effect on a web page, a
JavaScript static analysis tool could be combined with Viz-
Assert, using the JavaScript analysis to compute the set of
possible web page DOMs produced and then using VizAssert
to verify their layout properties.

VizAssert addresses only the browser rendering algorithm
for CSS. Similar techniques could be applied to other layout
algorithms, and finitization reductions similar to those used
in VizAssert could be used to formalize those algorithms. For
example, exclusion zones may be useful for formalizing the
behavior of floats in TEX, and the line height reduction could
apply to text layout in iOS or Android applications.

7 Related Work

VizAssert builds on previous efforts to formally study visual-
izations and graphical interfaces. It adds to the suite of tools
available to web developers to validate and improve their
web pages.

7.1 Formalization of Browser Rendering

VizAssert’s formalization of the browser rendering algorithm
is significantly more detailed and conformant than that of
previous work, Cassius [39], on which it builds. (Of the 13
major subsystems of the VizAssert formalization in Figure 2,
seven are not present in Cassius.) VizAssert’s advances on
this prior work include not only the finitization reductions
used to formalize line height, margin collapsing, and float-
ing layout, but also several additional CSS properties not
supported by Cassius and richer CSS selector support.

None of the realistic web pages used to evaluate VizAssert
fit within the small subset of CSS implemented by Cassius.
Besides the subsystems discussed in Section 4, these pages
also make frequent use of positioned layout (which allows
placing a box at a fixed pixel position on the screen) and
clearance (which allows moving a box vertically in response
to floats). Support for the text-indent and list-style-position
properties is also added in VizAssert.
Cassius was intended to be used for synthesizing CSS

from examples, and thus cannot assume a known, concrete
CSS file. When verifying web pages, however, the CSS file is
known; this allows VizAssert to compute selector matching
and cascading outside the SMT solver, making it possible to
support descendant, child, and pseudo-class selectors that
Cassius, which did selecting and matching in the SMT solver,
could not support. The assumption of a known CSS file also
allows VizAssert to soundly handle the em and ex units,
which scale with the font size and are thus essential for
writing accessible web pages.

Other work has formalized subsets of CSS using attribute
grammars [32]. Due to limitations of attribute grammars,
these efforts cover a smaller subset of CSS than VizAssert,
though a bigger one than Cassius. Furthermore, these for-
malizations are not meant for verification, only rendering,
and thus can not be used for mechanical reasoning.

7.2 Formalized Visual Reasoning

Previous work has approached the idea of mechanical reason-
ing about visual layout from many directions. Some authors
have investigated synthesizing programs from visual ma-
nipulations [12, 23]. Others have developed domain-specific
languages for visual layout, such as the grammar of graph-
ics [62] used by ggplot2 [61]. ConstraintSS [4] and similar
work on constraint-based layout [6, 22, 47, 51, 64] allow spec-
ifying layouts via a set of constraints, synthesizing the layout
from the constraints. While all of this work involves some

11

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA P. Panchekha, A.T. Geller, M.D. Ernst, Z. Tatlock, and S. Kamil

formal reasoning about layout, none of it provides a way to
assert or verify accessibility or usability properties.
Other work has explored testing disciplines for graphi-

cal interfaces. Sikuli Test [10] provides a simple scripting
language for describing sequences of user inputs and for com-
paring the interface pixel-for-pixel to a fixed image. Other
authors [26, 30, 37] provide techniques for capturing such
scripts from user interactions. This work has demonstrated
the importance of developing the right formal descriptions
of correct graphical interface behavior [63]. VizAssert in-
corporates this insight by developing an expressive logic in
which developers can specify their accessibility and usability
properties.

One such expressive logic is provided by Cornipickle [21],
which tests, for particular rendering parameters and sequence
of user actions, temporal properties of interactive web pages.
Visual logic is inspired by Cornipickle, but is adapted to en-
able automated reasoning: visual logic adds functions for
traversing the tree of boxes, adds the ancestor function for
relating distant boxes, and limits multiplication to linear
arithmetic. On the other hand, since VizAssert does not rea-
son about JavaScript, it omits Cornipickle’s temporal op-
erators. Cornipickle does not offer a verification tool like
VizAssert for its assertion language; it simply offers a conve-
nient method for testing assertions on particular renderings.

7.3 Accessibility

Major GUI frameworks, including Android, iOS, OS X, and
the multiple Windows frameworks, include support for ac-
cessibility information, which often involves annotating wid-
gets with roles or describing their content. For the web, this
framework is ARIA [55], which defines the meaning of ac-
cessibility attributes, and the WCAG [53], which documents
best practices for their use. Tools such as WAVE [60], SOAt-
est [40], and 508checker [18] check that the web page HTML
satisfies accessibility best practices such as avoiding justified
text and having meaningful captions. Academic work has
also been done on this problem. Raven [17] applies łvalida-
tion rulesž to ensure that the Java objects that make up a
graphical interface properly contain captions, summaries,
and valid mnemonics, important tests for accessible inter-
faces. Chang, Yeh, and Miller extend pixel-based tools such
as Sikuli to access accessibility information, such as content
and role information for user interface elements [9]. All of
these tools only test visual layout for particular rendering pa-
rameters, so do not provide strong guarantees independent
of the renderings parameters.

7.4 Tools for Interface Developers

Many recent papers have developed tools for designers of
user interfaces. Bricolage [25] uses heuristics to transfer
styles from one page to another; SeeSS [27] tracks the effects
of CSS changes; ReVision [45] extracts data from visualiza-
tions and synthesizes new presentations for that data; and

Remaui [36] uses heuristics to synthesize Android layouts
from mockups. These tools aim to simplify the task of writ-
ing or editing graphical interfaces; VizAssert focuses on
verifying these interfaces’ accessibility and usability. Some
authors have developed heuristics for detecting problematic
layouts [5, 28, 57, 58]. Other tools attempt to detect cross-
browser differences for web pages, often using heuristics to
build a high-level model of the page behavior [11, 31, 44]
These tools are useful, but are each specific to a single web
page property; VizAssert allows web developers to write and
verify custom assertions.

8 Conclusion

Verifying visual properties of user interfaces is important to
ensure applications are usable and accessible to all users. We
developed a visual logic of assertions and a publicly-available
automated tool, VizAssert, that verifies visual assertions for
web pages regardless of user preferences and screen sizes.
Building VizAssert contains novel formalizations of multiple
aspects of the CSS layout algorithm, including line height,
margin collapsing, and floating layout, implemented using
novel finitization reductions. For a set of real-world web-
pages, VizAssert verified assertions from usability guidelines
and standards, finding 64 errors with only 13 false positives.

Acknowledgments

We thank Jen Mankoff and Anat Caspi for invaluable com-
ments on early drafts. We also thank our shepherd Ben
Livshits and the anonymous reviewers for their valuable
suggestions.
This work was supported by an Adobe Fellowship and

by gifts from Adobe. This material is based upon work sup-
ported by the National Science Foundation Graduate Re-
search Fellowship Program under Grant No. DGE-1256082.
This material is based upon work supported by the United
States Air Force under Contract No. FA8750-15-C-0010, and
on research sponsored by Air Force Research Laboratory
and DARPA under agreement number FA8750-16-2-0032.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

References
[1] Apple. 2017. Human Interface Guidelines. https://developer.apple.

com/ios/human-interface-guidelines/

[2] Apple. 2017. UI Design Do’s and Don’ts. https://developer.apple.com/

design/tips/

[3] Apple Developer. 2017. UIKit Framework. https://developer.apple.

com/documentation/uikit

[4] Greg J. Badros, Alan Borning, Kim Marriott, and Peter J. Stuckey. 1999.

Constraint Cascading Style Sheets for the Web. In Proceedings of the

12th Annual ACM Symposium on User Interface Software and Technology

(UIST’15). ACM, 73ś82. https://doi.org/10.1145/320719.322588

[5] Jeffrey P. Bigham. 2014. Making the Web Easier to See with Oppor-

tunistic Accessibility Improvement. In Proceedings of the 27th Annual

12

Verifying That Web Pages Have Accessible Layout PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

ACM Symposium on User Interface Software and Technology (UIST ’14).

ACM, 117ś122. https://doi.org/10.1145/2642918.2647357

[6] Alan Borning, Richard Lin, and Kim Marriott. 1997. Constraints for

the Web. In Proceedings of the Fifth ACM International Conference on

Multimedia (MULTIMEDIA ’97). ACM, 173ś182. https://doi.org/10.

1145/266180.266361

[7] Matthew Butterick. 2010. Practical Typography. Matthew Butterick

Typography, online only.

[8] Lyndon Cerejo. 2011. A User-Centered Approach to Web Design

for Mobile Devices. https://www.smashingmagazine.com/2011/05/

a-user-centered-approach-to-web-design-for-mobile-devices

[9] Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. 2011. Associating the

Visual Representation of User Interfaces with Their Internal Structures

and Metadata. In Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology (UIST ’11). ACM, 245ś256.

https://doi.org/10.1145/2047196.2047228

[10] Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. 2010. GUI Testing

Using Computer Vision. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’10). ACM, 1535ś1544. https:

//doi.org/10.1145/1753326.1753555

[11] S. R. Choudhary, M. R. Prasad, and A. Orso. 2012. CrossCheck: Com-

bining Crawling and Differencing to Better Detect Cross-browser

Incompatibilities in Web Applications. In 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation. 171ś180.

https://doi.org/10.1109/ICST.2012.97

[12] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016.

Programmatic and Direct Manipulation, Together at Last. In Pro-

ceedings of the 37th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI ’16). ACM, 341ś354. https:

//doi.org/10.1145/2908080.2908103

[13] Burns David. 2012. Selenium 2 Testing Tools: Beginner’s Guide. Packt

Publishing, Birmingham, UK.

[14] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, 337ś340.

http://dl.acm.org/citation.cfm?id=1792734.1792766

[15] Diet. 2000. Basic Act on the Formation of an Advanced Information

and Telecommunications Network Society. http://japan.kantei.go.jp/

it/it_basiclaw/it_basiclaw.html

[16] European Commission. 2016. Directive (EU) 2016/2102 of the Euro-

pean Parliament and of the Council of 26 October 2016 on the ac-

cessibility of the websites and mobile applications of public sector

bodies. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:

OJ.L_.2016.327.01.0001.01.ENG&toc=OJ:L:2016:327:TOC

[17] Barry Feigenbaum and Michael Squillace. 2006. Accessibility Valida-

tion with RAVEN. In Proceedings of the 2006 International Workshop

on Software Quality (WoSQ ’06). ACM, 27ś32. https://doi.org/10.1145/

1137702.1137709

[18] LLC Formstack. 2014. Free Section 508 Compliance Checker. http:

//www.508checker.com/check

[19] Amy Fowler. 2017. A Swing Architecture Overview. http://www.

oracle.com/technetwork/java/architecture-142923.html

[20] Free Website Templates. 2017. Free Website Templates. https://

freewebsitetemplates.com

[21] Sylvain Hallé, Nicolas Bergeron, Francis Guerin, and Gabriel Le Bre-

ton. 2015. Testing Web Applications Through Layout Constraints.

In Software Testing, Verification and Validation (ICST), 2015 IEEE 8th

International Conference on. IEEE, IEEE, 1ś8.

[22] Osamu Hashimoto and Brad A. Myers. 1992. Graphical Styles for

Building Interfaces by Demonstration. In Proceedings of the 5th Annual

ACM Symposium on User Interface Software and Technology (UIST ’92).

ACM, 117ś124. https://doi.org/10.1145/142621.142635

[23] Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming

by Manipulation for Layout. In Proceedings of the 27th Annual ACM

Symposium on User Interface Software and Technology (UIST’14). ACM,

231ś241. https://doi.org/10.1145/2642918.2647378

[24] Melody Ivory and Aline Chevalier. 2002. A Study of Automated Web

Site Evaluation Tools. Technical Report. University of Washington,

Department of Computer Science.

[25] Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and Scott R. Klem-

mer. 2011. Bricolage: Example-based Retargeting for Web Design. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI’11). ACM, 2197ś2206. https://doi.org/10.1145/1978942.

1979262

[26] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2015.

Automated Generation of Visual Web Tests from DOM-based Web

Tests. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing (SAC ’15). ACM, 775ś782. https://doi.org/10.1145/2695664.

2695847

[27] Hsiang-Sheng Liang, Kuan-Hung Kuo, Po-Wei Lee, Yu-Chien Chan,

Yu-Chin Lin, and Mike Y. Chen. 2013. SeeSS: Seeing What I Broke ś

Visualizing Change Impact of Cascading Style Sheets (CSS). In Proceed-

ings of the 26th Annual ACM Symposium on User Interface Software and

Technology (UIST ’13). ACM, 353ś356. https://doi.org/10.1145/2501988.

2502006

[28] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J.

Halfond. 2017. Automated Repair of Layout Cross Browser Issues Using

Search-based Techniques. In Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA 2017).

ACM, 249ś260. https://doi.org/10.1145/3092703.3092726

[29] Jennifer Mankoff, Holly Fait, and Tu Tran. 2005. Is Your Web Page

Accessible?: A Comparative Study of Methods for Assessing Web Page

Accessibility for the Blind. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’05). ACM, 41ś50. https:

//doi.org/10.1145/1054972.1054979

[30] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI Rip-

ping: Reverse Engineering of Graphical User Interfaces for Testing.

In Proceedings of the 10th Working Conference on Reverse Engineering

(WCRE ’03). IEEE Computer Society, 260ś. http://dl.acm.org/citation.

cfm?id=950792.951350

[31] A. Mesbah and M. R. Prasad. 2011. Automated cross-browser com-

patibility testing. In 2011 33rd International Conference on Software

Engineering (ICSE). 561ś570. https://doi.org/10.1145/1985793.1985870

[32] Leo A. Meyerovich and Rastislav Bodik. 2010. Fast and Parallel Web-

page Layout. In Proceedings of the 19th International Conference on

World Wide Web (WWW ’10). ACM, 711ś720. https://doi.org/10.1145/

1772690.1772763

[33] Mozilla Developer Network. 2017. float. https://developer.mozilla.org/

en-US/docs/Web/CSS/float

[34] Mozilla Developer Network. 2017. Mobile accessibility check-

list. https://developer.mozilla.org/en-US/docs/Web/Accessibility/

Mobile_accessibility_checklist

[35] National Federation for the Blind. 2016. Blindness Statistics. https:

//nfb.org/blindness-statistics

[36] Tuan A. Nguyen and Christoph Csallner. 2015. Reverse engineer-

ing mobile application user interfaces with REMAUI. In Proc. 30th

IEEE/ACM International Conference on Automated Software Engineering

(ASE) (ASE’15). IEEE, 248ś259.

[37] Thomas Ostrand, Aaron Anodide, Herbert Foster, and Tarak Goradia.

1998. A Visual Test Development Environment for GUI Systems. In

Proceedings of the 1998 ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’98). ACM, 82ś92. https://doi.org/

10.1145/271771.271793

[38] Jason Pamental. 2014. AMoreModern Scale forWeb Typography. http:

//typecast.com/blog/a-more-modern-scale-for-web-typography

13

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA P. Panchekha, A.T. Geller, M.D. Ernst, Z. Tatlock, and S. Kamil

[39] Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning

for Web Page Layout. In Proceedings of the 2016 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2016). ACM, 181ś194. https:

//doi.org/10.1145/2983990.2984010

[40] Parasoft. 2017. Web UI Testing. https://www.parasoft.com/capability/

web-ui-testing/

[41] Pearson. 2017. Making E-Learning Accessible. http://wps.pearsoned.

com/accessibility/

[42] Android Open Source Project. 2017. UI Overview. https://developer.

android.com/guide/topics/ui/overview.html

[43] Murray Rowan, Peter Gregor, David Sloan, and Paul Booth. 2000. Evalu-

ating Web Resources for Disability Access. In Proceedings of the Fourth

International ACM Conference on Assistive Technologies (Assets ’00).

ACM, 80ś84. https://doi.org/10.1145/354324.354346

[44] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010.

WEBDIFF: Automated Identification of Cross-browser Issues in Web

Applications. In Proceedings of the 2010 IEEE International Conference

on Software Maintenance (ICSM ’10). IEEE Computer Society, 1ś10.

https://doi.org/10.1109/ICSM.2010.5609723

[45] Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh

Agrawala, and Jeffrey Heer. 2011. ReVision: Automated Classifica-

tion, Analysis and Redesign of Chart Images. In Proceedings of the 24th

Annual ACM Symposium on User Interface Software and Technology

(UIST ’11). ACM, 393ś402. https://doi.org/10.1145/2047196.2047247

[46] Terry Sullivan and RebeccaMatson. 2000. Barriers to Use: Usability and

Content Accessibility on the Web’s Most Popular Sites. In Proceedings

on the 2000 Conference on Universal Usability (CUU ’00). ACM, 139ś144.

https://doi.org/10.1145/355460.355549

[47] Ivan E. Sutherland. 1964. Sketch Pad a Man-machine Graphical Com-

munication System. In Proceedings of the SHARE Design Automation

Workshop (DAC ’64). ACM, 6.329ś6.346. https://doi.org/10.1145/800265.

810742

[48] Anthony T. 2012. Finger-friendly design: ideal mobile touch-

screen target sizes. https://www.smashingmagazine.com/2012/02/

finger-friendly-design-ideal-mobile-touchscreen-target-sizes/

[49] US DOJ. 2010. Department of Justice Advanced Notice of Proposed

Rulemaking, RIN 1190-AA61. https://www.ada.gov/anprm2010/web%

20anprm_2010.htm

[50] US DOJ. 2017. ADA Best Practices Tool Kit for State and Local Gov-

ernments. https://www.ada.gov/pcatoolkit/chap5toolkit.htm

[51] Christopher J. van Wyk. 1982. A High-Level Language for Specifying

Pictures. ACM Trans. Graph. 1, 2 (April 1982), 163ś182. https://doi.

org/10.1145/357299.357303

[52] Minh N. Vu and Susan Ryan. [n. d.]. 2017 Web-

site Accessibility Lawsuit Recap: A Tough Year for

Businesses. https://www.adatitleiii.com/2018/01/

2017-website-accessibility-lawsuit-recap-a-tough-year-for-businesses/

[53] W3C. 2008. Web Content Accessibility Guidelines 2.0. https://www.

w3.org/TR/WCAG/

[54] W3C. 2011. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Speci-

fication. https://www.w3.org/TR/2011/REC-CSS2-20110607/

[55] W3C. 2016. WAI-ARIA Overview. https://www.w3.org/WAI/intro/aria

[56] W3Schools. 2017. CSS Dropdowns. https://www.w3schools.com/css/

css_dropdowns.asp

[57] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. 2017.

Automated Layout Failure Detection for Responsive Web Pages With-

out an Explicit Oracle. In Proceedings of the 26th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis (ISSTA 2017). ACM,

192ś202. https://doi.org/10.1145/3092703.3092712

[58] T. A. Walsh, P. McMinn, and G. M. Kapfhammer. 2015. Automatic

Detection of Potential Layout Faults Following Changes to Responsive

Web Pages (N). In 2015 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE). 709ś714. https://doi.org/10.
1109/ASE.2015.31

[59] Web Platform Tests. 2017. web-platform-tests dashboard,

WPT/css/CSS2/floats. https://wptdashboard.appspot.com/css/

CSS2/floats

[60] WebAIM. 2017. WAVE Web Accessibility Tool. http://wave.webaim.

org/

[61] Hadley Wickham. 2009. ggplot2: Elegant Graphics for Data Analysis.

Springer-Verlag New York, New York, New York, USA. http://ggplot2.

org

[62] Leland Wilkinson. 2005. The Grammar of Graphics (Statistics and

Computing). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[63] Qing Xie and Atif M. Memon. 2007. Designing and Comparing Au-

tomated Test Oracles for GUI-based Software Applications. ACM

Trans. Softw. Eng. Methodol. 16, 1, Article 4 (Feb. 2007), 38 pages.

https://doi.org/10.1145/1189748.1189752

[64] Brad Vander Zanden and Brad A. Myers. 1991. The Lapidary Graphical

Interface Design Tool. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’91). ACM, 465ś466. https:

//doi.org/10.1145/108844.109005

14

