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Type-preserving compilation seeks to make intent as much as a part of compilation as computation. Specifica-
tions of intent in the form of types are preserved and exploited during compilation and linking, alongside
the mere computation of a program. This provides lightweight guarantees for compilation, optimization, and
linking. Unfortunately, type-preserving compilation typically interferes with important optimizations. In this
paper, we study typed closure representation and optimization. We analyze limitations in prior typed closure
conversion representations, and the requirements of many important closure optimizations. We design a new
typed closure representation in our Flat-Closure Calculus (FCC) that admits all these optimizations, prove
type safety and subject reduction of FCC, prove type preservation from an existing closure converted IR to
FCC, and implement common closure optimizations for FCC.
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1 Introduction
Compiler correctness is critically important, as a single compiler bug can affect millions of develop-
ers, and go on to affect hundreds of millions of end users. Unfortunately, formally specifying and
verifying a compiler is incredibly hard. For context, the CompCert C compiler has a specification
and verification overhead of approximately 6x—the amount of code written to formally specify and
verify the compiler is 6x the size of the compiler itself [Leroy 2009]. The situation can get worse
if you want guarantees for separate compilation and linking with external or handwritten target
code—Compositional CompCert [Stewart et al. 2015] doubled the specification and proof overhead
of CompCert.
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Type-preserving compilation presents a lightweight alternative to compiler verification that can
substantially reduce compiler bugs in practice. A type-preserving compiler uses typed interme-
diate languages (ILs) as the target of compiler passes and optimizations, and preserves the type
annotations from source to target [Morrisett et al. 1999; Tarditi et al. 1996].

Type checking in a typed IL is significantly easier than writing a compiler correctness proof,
but provides many guarantees. Common typed ILs guarantee type-and-memory safety of the
output of any pass or optimization, so long as the typed IL is safe. Wasm [Haas et al. 2017], a
typed IL, guarantees type and memory safety from any source language, although in general that
means a program that may have “worked” (with silent vulnerabilities) may raise an error in Wasm.
Other popular examples of type-preserving compilers include Java (to typed JVM bytecode), .NET
languages (to the typed .NET Common Intermediate Language), Haskell (to the strongly typed
Core). Even without a compiler, these typed ILs are useful to ensuring safe linking and execution
without trusting the original source or compiler. Handwritten components can have annotations
attached, and checked, or compilers can emit wrappers that type check or raise an explicit error.

While a type-preserving compiler provides fewer guarantees than a fully verified compiler in
theory, in practice they can be very useful at preventing compilation bugs. From the GHC trenches,
Peyton Jones [1996] reports “Maintaining types is a big win. …Perhaps the largest single benefit
came from an unexpected quarter: it is very easy to check a Core program for type correctness.
Now most bogus transformations are identified much earlier, and much more precisely.”

A key problem in type-preserving compilation is designing a type system for a low-level IL that
is (1) safe and (2) expressive enough to enable sophisticated optimizations.

Unfortunately, most type-preserving compilers and typed ILs restrict many optimizations. The
example we are concerned with is closure conversion. Common type-preserving closure conversion
translations guarantee correctness and even security, but heavily restrict low-level optimizations
on which practical compilers for functional languages rely [Ahmed and Blume 2008; Bowman and
Ahmed 2018; Kovács 2018; Minamide et al. 1996a,b; Morrisett et al. 1999; New et al. 2016]. This is a
fundamental limitation to practical implementation of type-preserving compilation for functional
languages.

In this paper, we present a novel typed IL, Flat-Closure Calculus (FCC), for expressing closure
conversion and closure optimization. FCC is an important and novel advance on the state-of-the-art
by providing a model for efficient typed closure conversion and optimization. We demonstrate how
various optimizations found in practice work in FCC. We also discuss the requirements necessary
to enable these optimizations, and how FCC implements them.

In short our contributions are:

(1) An analysis of the elements required to express efficient closure representation and opti-
mization (Section 2). This is important for understanding the requirements of a typed IL for
closure conversion, and clarifying our design decisions.

(2) The novel IL FCC realizing those requirements, enabling efficient type safe closure conversion
and optimization (Section 3). This provides evidence that we’ve identified correct design
elements, and, importantly, that they can be realized.

(3) A proof of type safety and subject reduction for FCC (Subsection 3.1), which provides ev-
idence that FCC does guarantee correctness properties of closure conversion and closure
optimizations. Type safety is important for ensuring lightweight correctness of compiled
output through type checking. Subject reduction is important for ensuring correctness of
various optimizations that can be modelled by reduction, such as inlining.
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(4) A translation from abstract closures to FCC (Section 4). This provides evidence that FCC can
be targeted by existing type-preserving compilers, and is important for integrating FCC into
past work based on abstract closure conversion.

(5) An implementation of standard optimizations for FCC (Section 5), in particular, the (1)
(mutually) recursive closure optimization [Keep et al. 2012; Morrisett and Harper 1998] and
(2) known and well known procedure optimizations [Steele Jr. 1978]. This provides evidence
that FCC is expressive enough to implement and optimize flat closures, and validate the
correctness of optimization.

We also provide a Redex [Felleisen et al. 2009; Klein et al. 2012] model of FCC, and implementation
of the optimizations in Section 5 in the anonymous supplementary materials.

2 Main Ideas
We distinguish two separate notions of a closure necessary for typed ILs: a representation and an
abstraction. The representation is the underlying data structure. A simple representation could be
a pair of the code pointer and a list of the values of free variables as the environment. A closure
abstraction hides the elements and size of the environment, ensuring functions of the same type
(but different environments) remain the same type after closure conversion. For example, consider a
higher-order function 𝑓 ∶ (𝑁𝑎𝑡 → 𝑁𝑎𝑡) → 𝐵, and two functions 𝑔 = 𝜆𝑥.𝑥 and ℎ = 𝜆𝑥.𝑥 +𝑦 of type
𝑁𝑎𝑡 → 𝑁𝑎𝑡. Both 𝑓 𝑔 and 𝑓 ℎ are well typed. However, if we expose the type of the environment, as
in the representation of a closure, then what should the type of 𝑓 be? We must be able to hide the
environment to ensure both 𝑓 𝑔 and 𝑓 ℎ remain well typed. An efficient, typed closure abstraction
of the flat closure representation is one of the main goals of our IL design.

Requirement 1: A typed closure abstraction must hide the type of the environment.
In typical type-preserving compilers, the closure representation is a pair of a code pointer and

an environment. The standard abstraction uses an existential type, assigning a function of type
𝐴 → 𝐵 the closure type ∃𝛼.⟨𝐴 → 𝛼 → 𝐵, 𝛼⟩. The environment of type 𝛼 is paired with the code
pointer of type 𝐴 → 𝛼 → 𝐵, which now expects the original parameter and the environment. The
existential type keeps the type of the environment abstract, and does not expose the elements or
size of the environment.

A closure abstraction must also enforce a calling convention that ensures a code pointer is called
with the expected environment. The expected environment is the one packaged with the code
pointer in a closure representation. Calling a code pointer with the incorrect environment gives
different behavior than what is expected from the source function, where the correct environment
is enforced and implicit by scope.

Requirement 2: A typed closure abstraction must enforce the calling convention: the code
pointer is called with its packaged environment.

The standard abstraction, using an existential type ∃𝛼.⟨𝐴 → 𝛼 → 𝐵, 𝛼⟩, follows this requirement.
The code pointer expects the abstract type 𝛼 as the environment, and the only expression of type 𝛼
is the environment packaged in the pair with the code pointer.

Practical compilers typically use a flat, also called display, closure [Appel 2006, Chapter 10],
discovered by Cardelli [1984]. A flat closure is a record1, a contiguous in-memory data structure
with constant access time to each field, containing the code pointer and the values of all the free
variables of the original function, i.e., the environment of the closure. This representation is safe-
for-space [Shao and Appel 1994], each free variable is accessible with a single memory indirect,
and the cost of allocation is proportional to the number of free variables.
1Not a record with unordered labels, but an n-tuple. We use the terminology record for consistency with past work.
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As an example, we might represent a flat closure of the function 𝜆𝑥.𝑥 + 𝑦 as 𝑐 = {𝑓 , 𝑦}, where 𝑓
is the code pointer, and 𝑦 is the free variable included in the environment. To call a flat closure on
argument 𝑒1, we project out the code pointer and reuse the closure itself as the environment, as
in 𝑐[0] 𝑐 𝑒1. In the body of the now-closed procedure 𝑓 we project out the free variable from the
closure parameter: 𝑓 = 𝜆𝑐 𝑥.𝑥 + 𝑐[1].

Requirement 3: A typed closure abstraction should support the efficient flat closure
representation and introduce no overhead.

The existential type abstraction introduces no overhead for the pair representation. To call a clo-
sure 𝑐 (represented as a pair) on an expression 𝑒1, we project both the code pointer and environment,
and then apply the code pointer to the environment: unpack⟨𝛼, 𝑝⟩ = 𝑐 in ((fst 𝑝) (snd 𝑝) 𝑒1). The
unpack form is computationally irrelevant, so the calling convention for the pair representation
has no overhead caused by the type abstraction.

However, the existential type abstraction is not suitable for a flat closure representation. The
type variable abstracts over an entire object, the environment, and cannot support abstracting over
part of an object, e.g., the part of the record that is the environment. Additionally, the type of the
code pointer does not support passing the closure itself as the environment.

Keep et al. [2012] provides several sets of closure optimizations over flat closures implemented
in the high-performance Chez Scheme compiler. Supporting these sets of optimizations with our
typed representation and abstraction is one of our goals.

The first set of optimizations are known procedure optimizations2. These optimizations require
the ability to call a procedure, i.e., the code pointer of a closure, directly, rather than only through
a closure. This saves a memory indirect when the code pointer of a closure is known at the call
site. For recursive closures, this enables recursion directly through code pointers, in addition to
indirectly through the closure.

Requirement 4: Procedures (including recursive) are directly callable through their code
pointer.

The existential type closure abstraction supports this optimization without any changes. However,
abstract closure conversion, as presented by Minamide et al. [1996a] and Bowman and Ahmed
[2018], does not support calling a procedure directly through its code pointer.

The second set of optimizations are well known procedure optimizations. When a procedure is
known at all of its possible call sites (i.e., well known), we can break the closure abstraction, and
optimize the underlying representation. A well known procedure can always be called directly, so
we can remove the code pointer from its closure. We can change the representation of the closure;
for example, when there are no free variables, we can eliminate the closure and environment
entirely. These optimizations require that procedure signatures be flexible.

Requirement 5: Procedures must have unrestricted signatures.

Past work like the existential type abstraction of closures, mostly supports these optimizations.
However, since the existential type quantifies over an entire object, and entire parameter, it’s
difficult to entirely eliminate the environment parameter. Since abstract closure conversion does
not support calling a procedure directly through its code pointer, these optimizations are not
immediately possible in current presentations of abstract closure conversion.

The third set of optimizations eliminate unnecessary free variables. These optimizations must be
supported in the IL, as optimizing closures may cause variables to become unnecessary. Removing

2Keep et al. [2012] don’t consider this separate from well known procedure optimization, but we do as each optimization
imposes different requirements on the IL.
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the free variables from a closure changes its representation, but not its abstraction. Thus, these
optimizations rely (in part) on Requirement 1 and Requirement 5. Most optimizations in this set
identify unnecessary free variables through constant propagation and aliasing. We model these as
partial evaluation in our IL, which means our IL must satisfy subject reduction: a term of type 𝐴
must still have type 𝐴 after reduction.

Requirement 6: The IL must satisfy subject reduction.

All prior work on type-preserving closure conversion supports this requirement.
The fourth and last set of optimizations involve optimizations for sets of mutually recursive

closures. Many of these introduce no new requirements: we need the ability to change the signa-
ture of well-known procedures (per Requirement 5), and to directly call known procedures (per
Requirement 4). However, there is one subtlety in the typed representation. Any escaping recursive
closure, such as a reference to a closure in a mutually recursive set or a self reference passed to
a higher-order function, must not reallocate the closure. Instead, the reference to the recursive
closure in scope should be used—either the closure argument to the procedure, or the closure bound
in a mutually recursive set. This is a special case of Requirement 3, but we distinguish it in a new
requirement as it has been studied separately in past work [Morrisett and Harper 1998].

Requirement 7: A typed closure representation must enable (mutually) recursive calls
without reallocating the closure.

Morrisett and Harper [1998] analyze three alternatives to representing typed recursive closures,
but each violates one of our requirements. The first alternative uses a recursive procedure definition,
allowing a procedure to recur directly through its own label. This satisfies Requirement 4, but
violates Requirement 7. Because the procedure takes its environment, rather than its closure, the
closure must be reconstructed if it escapes or is used in a mutually recursive call. The second
alternative uses recursive closures, so a closure is part of its own environment. However, this
violates Requirement 4, since all recursion must go through the environment. This also changes
the closure abstraction to require accessing the self reference indirectly through the environment,
introducing an extra memory indirect, violating Requirement 3. Keep et al. [2012] also note that
this self reference is unnecessary as a free variable, so this adds additional allocation overhead
(violating Requirement 3, again). The third alternative uses a recursive type, so a closure’s type is a
recursive existential type, allowing the closure itself to be passed as an argument, instead of the
environment. This is close to the flat closure representation and satisfies Requirement 7. However,
it still requires all recursion to go indirectly through the closure, violating Requirement 4.

The state of the art presents us with two choices: an efficient representation with an unenforcable
abstraction, or an enforcable abstraction with an inefficient representation.

2.1 A Novel IL
The existential type closure abstraction does not meet our requirements. In our IL, FCC, we develop
an abstract closure abstraction and typed representation that meets all the requirements.

The representation of a flat closure in FCC has type 𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶). The first field of
the record is the code pointer to the closure’s procedure.The rest of the record contains environment
values of types

#»𝐶 . The code pointer accepts the closure itself, so we use a recursive type to include
a self reference 𝛼 in the code pointer’s signature.

The closure abstraction in FCC has the type Clos( #»𝐴→𝐵), which only exposes the parameter and
output type of the code pointer, but hides the type of the environment satisfying Requirement 1. We
create an abstract closure from a closure representation using the clos type cast with the following
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typing rule.

Γ ⊢ 𝑒 ∶ 𝜇𝛼.Rec(Code(𝛼, #»𝐴 → 𝐵), #»𝐶 )

Γ ⊢ clos(𝑒) ∶ Clos( #»𝐴→𝐵)

Unlike past work, we want this abstract closure to support projecting out the code pointer,
rather than only application to the remaining arguments. This is related to Requirement 3 and
Requirement 4; we want clos to be erasable, and the projection from it should be replaceable by the
code pointer. This requires an operation on 𝑐𝑙 ∶ Clos( #»𝐴→𝐵) like 𝜋𝑐 𝑐𝑙 ∶ Code(?, #»𝐴→𝐵), but what
should ? be?

We use a singleton type to enforce the correct calling convention, per Requirement 2. There is
always exactly one environment that is safe to pass to the code pointer: the closure itself. This
matches the in-practice use of flat closures, and the singleton type lets us express this pattern. A
singleton type is indexed by a value, which is the only value inhabiting the type. The simplified
typing rule below demonstrates how singleton types are introduced.

Γ ⊢ 𝑣 ∶ 𝐴

Γ ⊢ is(𝑣) ∶ The(𝑣)

Now, when we project the code pointer from a closure Clos( #»𝐴→𝐵), we change the signature of
the code pointer to only accept the closure as its environment argument. We show a simplified
typing rule below.

Γ ⊢ 𝑐𝑙 ∶ Clos( #»𝐴→𝐵)

Γ ⊢ 𝜋𝑐 𝑐𝑙 ∶ Code(The(𝑐𝑙), #»𝐴→𝐵)

For example, a closure 𝑐𝑙 is applied to an argument 𝑣 as apply (𝜋𝑐 𝑐𝑙) (is(𝑐𝑙)) 𝑣.
Unfortunately, there’s a problem: the projection 𝜋𝑐 𝑐𝑙 has a different type than the underlying

code pointer. This violates requirements Requirement 6 and Requirement 4; reduction or known
procedure optimizations will result in terms of different types. The concrete code pointer type
expects a record, the representation of a closure, not an abstract closure nor a singleton of a closure.
Consider a closure 𝑐𝑙 = clos(rec(𝑓 , 𝑣1, 𝑣2)). If we project out the code pointer 𝑔 = 𝜋𝑐 𝑐𝑙 then 𝑔
expects is(𝑐𝑙) as the environment. However, 𝑔 is reduced to some procedure 𝑓 that expects the
record rec(𝑓 , 𝑣1, 𝑣2) and not the singleton is(𝑐𝑙).

We add the type cast accept-clos to FCC to resolve this discrepancy. Applied to a code pointer 𝑓,
accept-clos modifies the type signature to expect a singleton of a closure instead of the underlying
record. The type cast accept-clos checks against any closure 𝑐𝑙 with a valid representation type.

Γ ⊢ 𝑓 ∶ Code(𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 ), #»𝐴→𝐵) Γ ⊢ 𝑐𝑙 ∶ 𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 )

Γ ⊢ accept-clos(𝑓 ) ∶ Code(The(𝑐𝑙), #»𝐴→𝐵)

The expectation is that accept-clos is only introduced during certain intra-language optimizations
and evaluation. accept-clos enables the code pointer to have the same type as projecting the code
pointer from a closure, supporting local type-preserving optimizations. The reduction rule for
projecting from a closure demonstrates how the cast is introduced during evaluation.

𝜋𝑐 clos(rec(𝑓 , #»𝑣 )) ↪ accept-clos(𝑓 )

The accept-clos cast is computationally irrelevant, though the cast must be eliminated simultane-
ously with other type casts in the IL. The reduction rule for an indirect procedures call through a
closure with accept-clos demonstrates this:

apply accept-clos(𝑓 ) is(clos(𝑐𝑙)) #»𝑣 ↪ 𝑒[𝑥0 ↦ 𝑐𝑙][ #»𝑥 ↦ #»𝑣 ]
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𝑛 ∈ ℕ 𝑥, 𝑙 ∈ Variable 𝛼 ∈ TypeVariable

𝐴, 𝐵, 𝐶 ∶∶= 𝛼 ∣ Nat ∣ Clos( #»𝐴→𝐵) ∣ Code( #»𝐴→𝐵) ∣ Rec( #»𝐴) ∣ The(𝑣 ∶ 𝐴) ∣ 𝜇𝛼.𝐴
𝑣 ∶∶= 𝑥 ∣ 𝑙 ∣ 𝑛 ∣ rec( #»𝑣 ) ∣ clos(𝑣) ∣ accept-clos(𝑣) ∣ is(𝑣) ∣ fold(𝑣)
𝑒 ∶∶= 𝑣 ∣ apply 𝑒 #»𝑒 ∣ rec( #»𝑒 ) ∣ 𝜋𝑛 𝑒 ∣ 𝜋𝑐 𝑣 ∣ clos(𝑒) ∣ fold(𝑒) ∣ unfold(𝑒)

∣ let 𝑥 = 𝑒 in 𝑒 ∣ cletrec
#                                                 »

𝑥 = clos(fold(rec( #»𝑣 ))) in 𝑒

𝑓 ∶∶= 𝜆 #         »𝑥 ∶ 𝐴.𝑒
𝑝 ∶∶= letrec

#        »

𝑥 = 𝑓 in 𝑒

Γ ∶∶= ∅ ∣ Γ, 𝑥 ∶ 𝐴
Σ ∶∶= ∅ ∣ Σ, 𝛼
Δ ∶∶= ∅ ∣ Δ, 𝑥 ∶ Code( #»𝐴→𝐵)

Fig. 1. FCC Syntax

By contrast, FCC also includes the following reduction rule for a direct procedure call.

apply 𝑓 #»𝑣 ↪ 𝑒[ #»𝑥 ↦ #»𝑣 ]
In both, the body 𝑒 of the procedure 𝑓 is called with the parameters substituted by arguments #»𝑣 .
However, the reduction rule for applying a procedure with accept-clos removes the is constructor
and clos type cast on the underlying representation of the closure 𝑐𝑙.

After erasing the type casts, the reduction rules are equal. This satisfies Requirement 3, that the
abstraction introduces no overhead, and supports applying procedures directlywith no requirements
on the procedure signature, satisfying Requirement 5.We use these type casts to keep the abstraction
boundary of closures, while still using the efficient representation effectively.

FCC includes two forms of recursive function: indirectly, through closures via recursive types,
and directly, through letrec. The former is used to satisfy Requirement 7. A recursive closure call
would look something like: 𝑓 = 𝜆𝑒𝑛𝑣 .𝜆𝑎𝑟𝑔.(… apply (𝜋𝑐 𝑒𝑛𝑣) 𝑒𝑛𝑣…), where the recursive code
pointer is projected directly from the environment parameter. Without the recursive type, 𝑒𝑛𝑣 could
not be passed directly, and would have to be reconstructed (reallocated) from 𝑓 and the rest of the
environment. Similar situations arise if the recursive reference escapes, or in a mutually recursive
reference. letrec is used to satisfy Requirement 4. To optimize the recursive call to a direct call,
such as in 𝑓 = 𝜆𝑒𝑛𝑣 .𝜆𝑎𝑟𝑔.(… 𝑓 𝑒𝑛𝑣…), we also require direct (mutual) recursion through the code
pointer 𝑓. This requires 𝑓 to be bound in a (mutually) recursive block via letrec.

3 The FCC Intermediate Language
The syntax of FCC is shown in Figure 1. A program 𝑝 is a set of mutually recursive top-level
procedure definitions, followed by a final expression 𝑒. Values 𝑣 are either variables, run-time values,
or type casts on values. Expressions 𝑒 include standard introduction and elimination forms for
isorecursive types (fold and unfold), records (rec and 𝜋𝑛 𝑒), and a let binding form. Closures are
introduced using clos, or cletrec for mutually defined closures, and code pointers are projected
from closures with the 𝜋𝑐 𝑣 form. A code pointer is applied to a sequence of arguments using apply.

Most types are standard, such as a type Nat for natural numbers, Rec for record types, and
𝜇𝛼.𝐴 for recursive types. The type Code( #»𝐴→𝐵) represents the type of closed procedures, where
#»𝐴 represents the sequence of input types and 𝐵 the output type. The closure abstraction is given
the type Clos( #»𝐴→𝐵). Finally, the type The(𝑣 ∶ 𝐴) is a singleton of the value 𝑣 of type 𝐴. We
syntactically restrict singletons to values to avoid deciding equality between expressions while
type checking.

The lexical typing environment Γ maps variables to types. The Σ is the set of free type variables.
The global procedure environment Δ maps variables to procedure types.

Program Typing. The judgement ⊢ 𝑝 ∶ 𝐴 defined in Figure 2 checks the type of a top-level
program. A program is well typed if all procedure definitions are well typed under the procedure
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⊢ 𝑝 ∶ 𝐴

Program
∅; Δ ⊢ 𝑒 ∶ 𝐶 Δ =

#                                   »

𝑥 ∶ Code( #»𝐴→𝐵)
#                                               »

Δ ⊢ 𝑓 ∶ Code( #»𝐴→𝐵)

⊢ letrec
#        »

𝑥 = 𝑓 in 𝑒 ∶ 𝐶

Δ ⊢ 𝑓 ∶ 𝐴

Code
#         »𝑥 ∶ 𝐴; Δ ⊢ 𝑒 ∶ 𝐵 ∅; ∅; ∅ ⊢ Code( #»𝐴→𝐵)

Δ ⊢ 𝜆 #         »𝑥 ∶ 𝐴.𝑒 ∶ Code( #»𝐴→𝐵)

Fig. 2. FCC Program Typing

Γ; Δ ⊢ 𝑒 ∶ 𝐴

Nat
∅; Δ ⊢ Γ

Γ; Δ ⊢ 𝑛 ∶ Nat
Var

∅; Δ ⊢ Γ 𝑥 ∶ 𝐴 ∈ Γ

Γ; Δ ⊢ 𝑥 ∶ 𝐴
Proc

∅; Δ ⊢ Γ 𝑥 ∶ Code( #»𝐴→𝐵) ∈ Δ

Γ; Δ ⊢ 𝑥 ∶ Code( #»𝐴→𝐵)

Rec
#                        »Γ; Δ ⊢ 𝑒 ∶ 𝐴

Γ; Δ ⊢ rec( #»𝑒 ) ∶ Rec( #»𝐴)
Proj

Γ; Δ ⊢ 𝑒 ∶ Rec( #»𝐴)

Γ; Δ ⊢ 𝜋𝑖 𝑒 ∶ 𝐴𝑖
The

Γ; Δ ⊢ 𝑣 ∶ 𝐴

Γ; Δ ⊢ is(𝑣) ∶ The(𝑣 ∶ 𝐴)

CLetrec

#                                                                                  »

Γ, #         »𝑥 ∶ 𝐴; Δ ⊢ clos(fold(rec( #»𝑣 ))) ∶ 𝐴 Γ, #         »𝑥 ∶ 𝐴; Δ ⊢ 𝑒 ∶ 𝐵 #                      »Γ; ∅; Δ ⊢ 𝐴 Γ; ∅; Δ ⊢ 𝐵

Γ; Δ ⊢ cletrec
#                                                 »

𝑥 = clos(fold(rec( #»𝑣 ))) in 𝑒 ∶ 𝐵

Let
Γ; Δ ⊢ 𝑒1 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴; Δ ⊢ 𝑒2 ∶ 𝐵 Γ; ∅; Δ ⊢ 𝐵

Γ; Δ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ∶ 𝐵
Fold

Γ; Δ ⊢ 𝑒 ∶ 𝐴[𝛼 ↦ 𝜇𝛼.𝐴]

Γ; Δ ⊢ fold(𝑒) ∶ 𝜇𝛼.𝐴

Unfold
Γ; Δ ⊢ 𝑒 ∶ 𝜇𝛼.𝐴

Γ; Δ ⊢ unfold(𝑒) ∶ 𝐴[𝛼 ↦ 𝜇𝛼.𝐴]

Apply
Γ; Δ ⊢ 𝑓 ∶ Code( #»𝐴→𝐵) #                        »Γ; Δ ⊢ 𝑒 ∶ 𝐴

Γ; Δ ⊢ apply 𝑓 #»𝑒 ∶ 𝐵

Decl-Clos
Γ; Δ ⊢ 𝑒 ∶ 𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 ) Γ; ∅; Δ ⊢ Clos( #»𝐴→𝐵)

Γ; Δ ⊢ clos(𝑒) ∶ Clos( #»𝐴→𝐵)

Clos-Proj
Γ; Δ ⊢ 𝑣 ∶ Clos( #»𝐴→𝐵)

Γ; Δ ⊢ 𝜋𝑐 𝑣 ∶ Code(The(𝑣 ∶ Clos( #»𝐴→𝐵)), #»𝐴→𝐵)

Accept-Clos

Γ; Δ ⊢ 𝑣1 ∶ Code(𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 ), #»𝐴→𝐵)
Γ; Δ ⊢ 𝑣2 ∶ 𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 )

Γ; Δ ⊢ accept-clos(𝑣1) ∶ Code(The(clos(𝑣2) ∶ Clos( #»𝐴→𝐵)), #»𝐴→𝐵)

Fig. 3. FCC Expression Typing

environment Δ. Procedure types must be well formed under empty environments, which restricts
the use of a dependent type at a top level. The body 𝑒 is checked under the same procedure
environment Δ and the empty lexical type environment ∅.
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Γ; Σ; Δ ⊢ 𝐴

WFNat
Γ; Σ; Δ ⊢ Nat

WFClos
#                     »Γ; Σ; Δ ⊢ 𝐴 Γ; Σ; Δ ⊢ 𝐵

Γ; Σ; Δ ⊢ Clos( #»𝐴→𝐵)
WFCode

#                     »Γ; Σ; Δ ⊢ 𝐴 Γ; Σ; Δ ⊢ 𝐵

Γ; Σ; Δ ⊢ Code( #»𝐴→𝐵)

WFRec
#                     »Γ; Σ; Δ ⊢ 𝐴

Γ; Σ; Δ ⊢ Rec( #»𝐴)

WFThe
Γ; Δ ⊢ 𝑣 ∶ 𝐴

Γ; Σ; Δ ⊢ The(𝑣 ∶ 𝐴)

WFMu
Γ; 𝛼, Σ; Δ ⊢ 𝐴

Γ; Σ; Δ ⊢ 𝜇𝛼.𝐴

WFAlpha
𝛼 ∈ Σ

Γ; Σ; Δ ⊢ 𝛼

Fig. 4. FCC Well-Formed Types

Σ; Δ ⊢ Γ ⊢ Δ
WFEmptyG

⊢ Δ

Σ; Δ ⊢ ∅

WFGamma
Σ; Δ ⊢ Γ Γ; Σ; Δ ⊢ 𝐴 𝑥 ∉ Γ

Σ; Δ ⊢ Γ, 𝑥 ∶ 𝐴

WFDelta
Δ =

#                                      »

𝑥 ∶ Code( #»𝐴 𝑖→𝐵𝑖)
#                                                  »

∅;∅; ∅ ⊢ Code( #»𝐴→𝐵)

⊢ Δ

Fig. 5. FCC Well-Formed Type and Procedure Environments

The judgement Δ ⊢ 𝑓 ∶ 𝐴, also in Figure 2, checks top-level procedures. The procedure body 𝑒 is
checked with only its parameters parameters #»𝑥 of types

#»𝐴 in the lexical environment, ensuring the
procedure is closed. Because singleton types may refer to variables, we require the procedure type
Code( #»𝐴→𝐵) to be well formed to prevent the types

#»𝐴 and output type 𝐵 referring to variables
out of scope. At the top-level, procedure types must be well formed in an empty context to avoid
some cyclic well formedness checking, since the singleton type (a dependent type) causes well
formedness and well typedness to be mutually defined.

Expression Typing. The typing judgement for expressions Γ; Δ ⊢ 𝑒 ∶ 𝐴 is defined in Figure 3 and
states that 𝑒 has type 𝐴 under the type environment Γ and procedure environment Δ. Many of
the typing rules are essentially standard. Rule Apply is standard for a closure-converted language,
and is essentially similar to typing standard function application. Rule Fold and Rule Unfold are
the standard rules for isorecursive types [Pierce 2002], where the type variable 𝛼 is substituted
with the recursive type. Rule Proc is the equivalent of Rule Var for procedure variables, whose
types are in the procedure environment Δ. Rule Nat, Rule Var and Rule Proc each require the type
environment Γ to be well formed. Mutually defined closures are typed using Rule CLetrec, which
checks both the body 𝑒 and the binding expressions

#                                                  »

𝑥 = clos(fold(rec( #»𝑣 ))) with types
#»𝐴 under

a type environment binding all of
#         »𝑥 ∶ 𝐴. A singleton type The(𝑣 ∶ 𝐴) is introduced using the is

constructor in Rule The, requiring the value 𝑣 to be well typed.
Rule Decl-Clos ensures abstract closures Clos( #»𝐴→𝐵) are created from the correct recursive

closure representation type. Rule Clos-Proj casts the procedure projected from a closure 𝑣 to expect
a singleton of the same closure The(𝑣 ∶ Clos( #»𝐴→𝐵)). Finally, in Rule Accept-Clos, accept-clos
modifies a procedure 𝑣1 that accepts the record representation of the closure to one that accepts a
singleton of an abstract closure constructed from that representation 𝑣2. The value 𝑣2 is checked to
ensure the correct closure representation type.
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𝛿 ⊢ ⟨𝜓 ∣ 𝑒⟩ ↪ ⟨𝜓 ′ ∣ 𝑒′⟩
𝛿 ⊢ ⟨𝜓 ∣ 𝜋𝑖 rec( #»𝑣 )⟩ ↪𝜋 ⟨𝜓 ∣ 𝑣𝑖⟩

𝛿 ⊢ ⟨𝜓 ∣ 𝜋𝑐 clos(fold(rec( #»𝑣 )))⟩ ↪𝜋−𝑐𝑙𝑜𝑠 ⟨𝜓 ∣ accept-clos(𝑣0)⟩
𝛿 ⊢ ⟨𝜓 ∣ apply 𝑥𝑓 #»𝑣 ⟩ ↪𝛽 ⟨𝜓 ∣ ̂𝑒[ #         »𝑥 ↦ 𝑣]⟩

where 𝑥𝑓 = 𝜆 #         »𝑥 ∶ 𝐴. ̂𝑒 ∈ 𝛿
𝛿 ⊢ ⟨𝜓 ∣ apply accept-clos(𝑥𝑓) is(clos(𝑣0)) #»𝑣 ⟩ ↪𝛽−𝑐𝑙𝑜𝑠 ⟨𝜓 ∣ ̂𝑒[𝑥0 ↦ 𝑣0][ #         »𝑥 ↦ 𝑣]⟩

where 𝑥𝑓 = 𝜆𝑥0 ∶ _, #         »𝑥 ∶ 𝐴. ̂𝑒 ∈ 𝛿
𝛿 ⊢ ⟨𝜓 ∣ let 𝑥 = 𝑣 in 𝑒⟩ ↪𝜁 ⟨𝜓 ∣ 𝑒[𝑥 ↦ 𝑣]⟩

𝛿 ⊢ ⟨𝜓 ∣ cletrec
#         »

𝑥 = 𝑐𝑙 in 𝑒⟩ ↪𝜁−𝑐𝑙𝑜𝑠 ⟨𝜓 ,
#                          »

𝑙 ↦ 𝑐𝑙[
#        »

𝑥 ↦ 𝑙] ∣ 𝑒[
#        »

𝑥 ↦ 𝑙]⟩
where

#                                                 »

𝑐𝑙 = clos(fold(rec( #»𝑣 )))
𝛿 ⊢ ⟨𝜓 , 𝑙 ↦ 𝑐𝑙 ∣ 𝑙⟩ ↪𝛼 ⟨𝜓 , 𝑙 ↦ 𝑐𝑙 ∣ 𝑐𝑙⟩

where 𝑐𝑙 = clos(fold(rec( #»𝑣 )))
𝛿 ⊢ ⟨𝜓 ∣ unfold(fold(𝑣))⟩ ↪𝛾 ⟨𝜓 ∣ 𝑣⟩

StepCtx
𝛿 ⊢ ⟨∅ ∣ 𝑒⟩ ↪ ⟨𝜓 ∣ 𝑒′⟩

𝛿 ⊢ ⟨𝜓 ∣ 𝐸[𝑒]⟩ ↪𝜅 ⟨𝜓 ′ ∣ 𝐸[𝑒′]⟩

𝐸 ∶∶= [⋅] ∣ apply 𝐸 #»𝑒 ∣ apply 𝑣 #»𝑣 , 𝐸, #»𝑒 ∣ rec( #»𝑣 , 𝐸, #»𝑒 ) ∣ 𝜋𝑛 𝐸 ∣ 𝜋𝑐 𝐸
∣ fold(𝐸) ∣ unfold(𝐸) ∣ let 𝑥 = 𝐸 in 𝑒

𝛿 ∶∶= ∅ ∣ 𝛿, 𝑥 = 𝑓
𝜓 ∶∶= ∅ ∣ 𝜓 , 𝑙 ↦ clos(fold(rec( #»𝑣 )))

Fig. 6. FCC Small-Step Reduction

Well Formed Types and Environments. The judgement Γ; Σ; Δ ⊢ 𝐴 is defined in Figure 4 to check
types are well formed. All the rules are essentially standard. Rule WFThe requires that the value
argument 𝑣 is well typed at the annotated type 𝐴, so well formed types are defined mutually with
the typing of expressions. The type annotation in The syntactically prevents cyclic derivations.

Well formed types rely on well formed type environments Γ, defined by the judgement Σ; Δ ⊢ Γ
in Figure 5. Rule WFGamma ensures that each binding 𝑥 ∶ 𝐴 ∈ Γ has a well formed type 𝐴, given all
preceding bindings in Γ. By RuleWFEmptyG, Γ is well formed only if the procedure environment is by
⊢ Δ. The judgement ⊢ Δ ensures all procedures have well formed types under empty environments.

Reduction Rules. The reduction rules for FCC are given in Figure 6, presented as a small-step
semantics under an evaluation context. The reduction rules 𝛿 ⊢ ⟨𝜓 ∣ 𝑒⟩ ↪ ⟨𝜓 ′ ∣ 𝑒′⟩ use a static
heap 𝛿, which maps variables to procedures, and a dynamic heap 𝜓, which maps labels to closures.
Under a static heap 𝛿, the expression 𝑒 with dynamic heap 𝜓 reduces to an expression 𝑒′ with a new
heap 𝜓 ′.

Many of the reduction rules are essentially standard, so we focus on the reductions Rule ↪𝜋−𝑐𝑙𝑜𝑠
and Rule ↪𝛽−𝑐𝑙𝑜𝑠 unique to FCC. Projecting the code pointer from a closure wraps a type cast accept-
clos around the concrete code pointer 𝑣0. Recall from Subsection 2.1 that this type cast soothes
the type discrepancy that arises from the abstract closure projection operation producing a code
pointer with a concrete environment type. Applying a closure is similar to the standard procedure
application rule Rule ↪𝛽, except the type casts are erased ensuring the closure representation 𝑣0
is substituted for the first parameter 𝑥0. The type casts must be erased, as we note in the proof
of Subject Reduction (Lemma 3.4), since the procedure body is typed expecting a record not an
abstract closure.
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Δ ⊢ 𝜓 ∶ Γ ⊢ 𝛿 ∶ Δ
Heap
𝜓 =

#       »

𝑙 ↦ 𝑣 Γ =
#       »

𝑙 ∶ 𝐴 #                         »Γ; Δ ⊢ 𝑣 ∶ 𝐴

Δ ⊢ 𝜓 ∶ Γ

StaticCode
𝛿 =

#       »

𝑥 = 𝑓 Δ =
#                                   »

𝑥 ∶ Code( #»𝐴→𝐵) Δ ⊢
#                                    »

𝑓 ∶ Code( #»𝐴→𝐵)

⊢ 𝛿 ∶ Δ

Fig. 7. FCC Run-Time Typing

3.1 Metatheory
We prove type safety of FCC, stated formally below, which states that all well typed programs in
FCC either either step to a value or diverge, proving an absence of type, memory, and undefinedness
errors. The proof follows the standard Progress (Lemma 3.2) and Subject Reduction (Lemma 3.4)
lemmas [Harper 1996; Wright and Felleisen 1994].

Theorem 3.1 (Type Safety). If ⊢ 𝑝 ∶ 𝐶, then either ∅ ⊢ ⟨∅ ∣ 𝑝⟩ ↪𝑘 ⟨𝜓 ∣ 𝑣⟩ or diverges.

Progress and Subject Reduction require relating the static and dynamic heaps to the typing
environments these heaps represent, formalized in Figure 7. The judgement ⊢ 𝛿 ∶ Δ checks the
static heap 𝛿 against the types in procedure environment Δ, and Δ ⊢ 𝜓 ∶ Γ checks the dynamic
heap 𝜓 against the types in the typing environment Γ.

Progress guarantees that a well typed expression is already a value or steps to another expression
under well typed heaps; note that it says nothing about whether the result is well typed.

Lemma 3.2 (Progress). If Γ; Δ ⊢ 𝑒 ∶ 𝐶, then either 𝑒 is a value or 𝛿 ⊢ ⟨𝜓 ∣ 𝑒⟩ ↪ ⟨𝜓 ′ ∣ 𝑒′⟩ where
⊢ 𝛿 ∶ Δ, and Δ ⊢ 𝜓 ∶ Γ.

Proof. The proof is straightforward by induction on the typing judgement Γ; Δ ⊢ 𝑒 ∶ 𝐶. We
present the cases for applying and projecting from a closure, as these involve our new reduction
rules for FCC. Both cases are expressions, so it suffices to show they always take a step.
Case Rule Apply By induction, either some subterm 𝑒𝑓 or any of #»𝑒 takes a step, or all are values.
If one takes a step, then 𝛿 ⊢ ⟨𝜓 ∣ apply 𝑒𝑓 #»𝑒 ⟩ ↪ ⟨𝜓 ′ ∣ 𝑒′⟩ holds trivially by ↪𝑘. Otherwise, since 𝑒𝑓
is a value and of type Code( #»𝐴→𝐵), we have that 𝑒𝑓 is either a variable or a accept-clos(𝑥) with 𝑥 a
variable by Lemma 3.3. If 𝑒𝑓 is a variable, (𝑒𝑓 ↦ 𝑓 ) ∈ 𝛿 and stepping proceeds by ↪𝛽. Otherwise, 𝑒𝑓
is a accept-clos(𝑥), and stepping proceeds by ↪𝛽−𝑐𝑙𝑜𝑠.
Case Rule Accept-Clos By induction, either 𝑐 steps to another expression 𝑐′, or 𝑐 is a value. If
𝑐 steps, then 𝛿 ⊢ ⟨𝜓 ∣ 𝜋𝑐 𝑐⟩ ↪ ⟨𝜓 ′ ∣ 𝜋𝑐 𝑐′⟩ holds trivially by ↪𝑘. Otherwise, 𝑐 is either a label or
clos(fold(rec( #»𝑣 ))) for some #»𝑣 with #»𝑣 values by Lemma 3.3. If 𝑐 is a label, (𝑐 ↦ 𝑣) ∈ 𝜓 and stepping
proceeds by ↪𝛼. Otherwise, 𝑐 is clos(fold(rec( #»𝑣 ))), and stepping proceeds by ↪𝜋−𝑐𝑙𝑜𝑠. �

Progress (Lemma 3.2) relies on the standard Canonicity lemma (Lemma 3.3) to reason about
the form of a value from its type. The lemma is non-obvious since we have a dependent type, but
it is straightforward since our type equality is based on syntactic equality, which is trivial. We
give key cases of the statement here; a full version and its proof are provided in the anonymous
supplementary materials.

Lemma 3.3 (Canonicity (excerpts)).
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• If Γ; Δ ⊢ 𝑒 ∶ Code( #»𝐴→𝐵), 𝑒 ∈ 𝑣, and Δ ⊢ 𝜓 ∶ Γ then either 𝑒 ∈ Variable such that (𝑒 ∶
Code( #»𝐴→𝐵)) ∈ Δ or 𝑒 = accept-clos(𝑥) for some 𝑥 ∈ Variable.

• If Γ; Δ ⊢ 𝑒 ∶ Clos( #»𝐴→𝐵), 𝑒 ∈ 𝑣, and Δ ⊢ 𝜓 ∶ Γ then either 𝑒 ∈ Variable such that (𝑒 ↦ 𝑣𝑒) ∈ 𝜓 or
𝑒 = clos(𝑣𝑒) for some 𝑣𝑒 that is a value.

• If Γ; Δ ⊢ 𝑒 ∶ The(𝑣𝑒 ∶ 𝐴), 𝑒 ∈ 𝑣, and Δ ⊢ 𝜓 ∶ Γ then 𝑒 = is(𝑣𝑒) for some 𝑣𝑒 that is a value.
Subject Reduction guarantees if a well typed expressions takes a step, the result is well typed.

Lemma 3.4 (Subject Reduction). If 𝛿 ⊢ ⟨𝜓 ∣ 𝑒⟩ ↪ ⟨𝜓 ′ ∣ 𝑒′⟩ and Γ; Δ ⊢ 𝑒 ∶ 𝐶, where ⊢ 𝛿 ∶ Δ
and Δ ⊢ 𝜓 ∶ Γ, then Γ′; Δ ⊢ 𝑒′ ∶ 𝐶, where Δ ⊢ 𝜓 ′ ∶ Γ′

Proof. The proof proceeds by induction on the derivation 𝛿 ⊢ ⟨𝜓 ∣ 𝑒⟩ ↪ ⟨𝜓 ′ ∣ 𝑒′⟩. We present
the cases for novel reduction rules ↪𝜋−𝑐𝑙𝑜𝑠 and ↪𝛽−𝑐𝑙𝑜𝑠, and the standard reduction rule ↪𝜋.
Remaining cases are straightforward, and full details are included in the anonymous supplementary
materials.
Case Rule ↪𝜋 : 𝛿 ⊢ ⟨𝜓 ∣ 𝜋𝑖 rec( #»𝑣 )⟩ ↪𝜋 ⟨𝜓 ∣ 𝑣𝑖⟩. We must show that 𝑣𝑖 has the same type as
𝜋𝑖 rec( #»𝑣 ), which follows from inversion on the typing derivation for 𝜋𝑖 rec( #»𝑣 ) (Rule Proj).
Case Rule ↪𝜋−𝑐𝑙𝑜𝑠 : 𝛿 ⊢ ⟨𝜓 ∣ 𝜋𝑐 clos(fold(rec( #»𝑣 )))⟩ ↪𝜋−𝑐𝑙𝑜𝑠 ⟨𝜓 ∣ accept-clos(𝑣0)⟩. We must
show that the type cast accept-clos(𝑣0) has the same code pointer type as the closure projection,
Code(The(clos(fold(rec( #»𝑣 ))), #»𝐴)→𝐵).
By Rule Accept-Clos, it suffices to show 𝑣0 ∶ Code(𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶), #»𝐴→𝐵). This follows
by inversion on the typing derivation for clos(fold(rec( #»𝑣 ))) (Rule Decl-Clos, Rule Fold, Rule Rec),
since the first component 𝑣0 of #»𝑣 is a code pointer expecting the representation of a closure as a
recursive record.
Case Rule ↪𝛽−𝑐𝑙𝑜𝑠 : 𝛿 ⊢ ⟨𝜓 ∣ apply accept-clos(𝑥𝑓) is(clos(𝑣0)) #»𝑣 ⟩ ↪ ⟨𝜓 ∣ ̂𝑒[𝑥0 ↦ 𝑣0][ #         »𝑥 ↦ 𝑣]⟩.
When applying a closure, the type casts around the code pointer and closure are erased. The type
cast around the code pointer is no longer necessary when reduction moves to the procedure body.
The procedure body ̂𝑒 expects a record as the environment parameter, so erasing both the is and
clos around 𝑣0 is necessary. Then, given that the procedure body ̂𝑒 and all the arguments are well
typed (which they are by inversion on the derivations for the original expression and the well
typed heaps), we conclude ̂𝑒 is well typed with the parameters substituted with the arguments by
the Substitution Lemma (Lemma 3.5). Note that well formedness of types guarantees that 𝑥0 and #»𝑥
are not bound in the type of the application. �

Subject Reduction usually relies on a standard substitution lemma, as some steps of reduction
(e.g., function application) use substitution. Our version of the substitution lemma is stated below,
and notice that substitution also occurs in the type T because of our use of the dependent equality
type. The proof is straightforward by (mutual) induction on the typing and well formed judgments,
and is provided in the anonymous supplementary materials. We also state and prove that the context
Γ, Γ′[𝑥 ↦ 𝑏] and type 𝑇 [𝑥 ↦ 𝑏] are well formed after substitution, but this is straightforward due
to our well formed context and type judgements and restricted dependent type.

Lemma 3.5 (Substitution). We have that
(1) If Γ, 𝑥 ∶ 𝐵, Γ′; Δ ⊢ 𝑡 ∶ 𝑇, Γ; Δ ⊢ 𝑏 ∶ 𝐵, and ⊢ Δ, then Γ, Γ′[𝑥 ↦ 𝑏]; Δ ⊢ 𝑡[𝑥 ↦ 𝑏] ∶ 𝑇 [𝑥 ↦

𝑏].
(2) If ∅; Δ ⊢ Γ, 𝑥 ∶ 𝐵, Γ′, Γ; Δ ⊢ 𝑏 ∶ 𝐵, and ⊢ Δ, then ∅; Δ ⊢ Γ, Γ′[𝑥 ↦ 𝑏].
(3) If Γ, 𝑥 ∶ 𝐵, Γ′; ∅; Δ ⊢ 𝑇, Γ; Δ ⊢ 𝑏 ∶ 𝐵, and ⊢ Δ, then Γ, Γ′[𝑥 ↦ 𝑏]; ∅; Δ ⊢ 𝑇 [𝑥 ↦ 𝑏].
The Substitution lemma relies on the types of well typed terms being well formed. The proof

is straightforward since all typing derivations check for well formed environments, which must
include well formed types.
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𝐴, 𝐵, 𝐶 ∶∶= Nat ∣ Clos( #»𝐴 → 𝐵) ∣ ⟨ #»𝐴⟩ ∣ Code(⟨ #»𝐴⟩ ∣ 𝐵 → 𝐶)
𝑒 ∶∶= ℕ ∣ 𝑥 ∣ 𝑒1 #»𝑒2 ∣ ⟨ #»𝑒 ⟩ ∣ 𝜋ℕ 𝑒 ∣ ⟨⟨𝑒1, 𝑒2⟩⟩ ∣ cletrec

#                            »

𝑥 = ⟨⟨𝑥𝑓, ⟨ #»𝑥𝑣⟩⟩⟩ in 𝑒 ∣ let 𝑥 = 𝑒1 in 𝑒2
𝑓 ∶∶= 𝜆𝑥ve ∶ 𝐴ve.𝜆 #        »𝑥 ∶ 𝐵.𝑒
𝑝 ∶∶= letrec

#        »

𝑥 = 𝑓 in 𝑒

Fig. 8. ACC Syntax

Δ ⊢ 𝑓 ∶ Code(⟨ #»𝐴⟩ ∣ #»𝐵 → 𝐶)
a-Code

(∅, 𝑥ve ∶ ⟨ #»𝐴⟩, #        »𝑥 ∶ 𝐵); Δ ⊢ 𝑒 ∶ 𝐶

Δ ⊢ 𝜆𝑥ve ∶ ⟨ #»𝐴⟩.𝜆 #        »𝑥 ∶ 𝐵.𝑒 ∶ Code(⟨ #»𝐴⟩ ∣ #»𝐵 → 𝐶)

Fig. 9. ACC Code Typing

Lemma 3.6. If Γ; Δ ⊢ 𝑡 ∶ 𝑇 and ⊢ Δ, then Γ; ∅; Δ ⊢ 𝑇.

4 Compiling to FCC
Minamide et al. [1996a] provide a type-preserving translation from a typed 𝜆-caculus-like language
into 𝜆𝑐𝑙, a typed IL with abstract closures, and a type-preserving translation from 𝜆𝑐𝑙 into a typed
IL where the closure abstraction is explicitly encoded using existential types.

In 𝜆𝑐𝑙, closures are created by packaging a code pointer with an environment. Closures only
support one operation: being called as a package with arguments. This is the “abstract” part of
“abstract closure conversion”: the representation of closures is implicit, so we cannot rely on it for
optimizations. The IL 𝜆𝑐𝑙 does not support many of the optimizations we wish to support, such as
the known procedure optimizations.

To show how FCC can be used as part of a type preserving compiler, we define a translation
from a version of 𝜆𝑐𝑙, that we call the Abstract Closure Calculus (ACC), to FCC, and show that it
preserves types. We choose to show the translation from ACC to FCC, as opposed to looking at
a translation from a not-yet-closure-converted source language. This is because there is existing
literature that targets ACC-style closures, and we wish to focus on the representation of closures
for optimization in FCC, including the difference in representation between ACC and FCC.

ACC has the same closure abstraction as 𝜆𝑐𝑙, but assumes that procedures have already been
hoisted to the top-level and that certain expressions are in a monadic form. Type-preserving hoisting
and monadic form transformations are straightforward and have been implemented as part of, e.g.,
Morrisett et al. [1999]. In addition, ACC implements two forms of recursion. ACC has recursive
procedure definitions via letrec, but also the recursive closure binding form, cletrec, which supports
mutually recursive closures; this is necessary to generate mutually recursive closures from mutually
recursive functions.

4.1 The ACC Language
As ACC is not novel, and many of the details are similar to FCC, we present a terse description of
the language syntax and typing rules.

A program is a set of recursive procedure definitions 𝑥 = 𝑓, followed by an expression 𝑒
representing the body (see Figure 8). The typing rule for ACC programs is identical to the one for
FCC programs and therefore omitted.
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Γ; Δ ⊢ 𝑒 ∶ 𝐴
Γ; Δ ⊢ 𝑒1 ∶ Clos( #»𝐴 → 𝐵) #                          »Γ; Δ ⊢ 𝑒2 ∶ 𝐴

Γ; Δ ⊢ 𝑒1 #»𝑒2 ∶ 𝐵

#                        »Γ; Δ ⊢ 𝑒 ∶ 𝐴

Γ; Δ ⊢ ⟨ #»𝑒 ⟩ ∶ ⟨ #»𝐴⟩

Γ; Δ ⊢ 𝑒 ∶ ⟨ #»𝐴⟩

Γ; Δ ⊢ 𝜋𝑖 𝑒 ∶ 𝐴𝑖

#                                                              »

Γ, #         »𝑥 ∶ 𝐴; Δ ⊢ ⟨⟨𝑥𝑓, ⟨ #»𝑥𝑣⟩⟩⟩ ∶ 𝐴 Γ, #         »𝑥 ∶ 𝐴; Δ ⊢ 𝑒 ∶ 𝐵

Γ; Δ ⊢ cletrec
#                            »

𝑥 = ⟨⟨𝑥𝑓, ⟨ #»𝑥𝑣⟩⟩⟩ in 𝑒 ∶ 𝐵

Γ; Δ ⊢ 𝑒1 ∶ Code(⟨ #»𝐴⟩ ∣ #»𝐵 → 𝐶)
Γ; Δ ⊢ 𝑒2 ∶ ⟨ #»𝐴⟩

Γ; Δ ⊢ ⟨⟨𝑒1, 𝑒2⟩⟩ ∶ Clos( #»𝐵 → 𝐶)

Fig. 10. ACC Expression Typing (Excerpts)

JΓ; Δ ⊢ 𝑓 ∶ Code(⟨ #»𝐴⟩ ∣ #»𝐵 → 𝐶)K ≜ 𝑓

JΓ; Δ ⊢ 𝜆𝑥 ∶ ⟨ #»𝐴⟩.𝜆 #        »𝑦 ∶ 𝐵.𝑒
∶ Code(⟨ #»𝐴⟩ ∣ #»𝐵 → 𝐶)K

≜ 𝜆𝑥̂ ∶ 𝜇𝛼.Rec(Code(𝛼,
#   »

J𝐵K→J𝐶K),
#    »

J𝐴K),
#             »

𝑦 ∶ J𝐵K.
let 𝑥 = rec(𝜋1 unfold(𝑥̂), ..., 𝜋𝑛+1 unfold(𝑥̂))
in JΓ, 𝑥 ∶ ⟨ #»𝐴⟩, #        »𝑦 ∶ 𝐵 ⊢ 𝑒 ∶ 𝐶K

Fig. 11. Type-Directed Translation of ACC Procedures to FCC

An ACC procedure expects an environment argument 𝑥ve with type ⟨ #»𝐴⟩, and other arguments
#»𝑥 with types #»𝐵 , as shown in Figure 9. ACC environment arguments must be records, a property
satisfied by the translation to ACC from Minamide et al. [1996a]. The type of procedures is repre-
sented by Code(⟨ #»𝐴⟩ ∣ #»𝐵 → 𝐶), where #»𝐵 are the input types, 𝐶 is the output type, and ⟨ #»𝐴⟩ is the
environment argument type.

Environment arguments are represented by records (⟨ #»𝑒 ⟩) and projecting from them (𝜋𝑖 𝑒).
Records are given the type ⟨ #»𝐴⟩, where 𝐴𝑖 represents the type of the 𝑖th element of the record, as
seen in Figure 10.

A closure, ⟨⟨𝑒1, 𝑒2⟩⟩, in ACC is constructed by packaging a procedure label 𝑒1 with an environment
𝑒2, containing just the free variables of 𝑒1. Closures have the closure type Clos( #»𝐵 → 𝐶), assuming
the procedure has the type Code(⟨ #»𝐴⟩ ∣ #»𝐵 → 𝐶), and the environment then has the expected record
type ⟨ #»𝐴⟩, as seen in Figure 10. Closure application 𝑒1 #»𝑒2 applies the closure 𝑒1 as a package to the
arguments #»𝑒2

Like FCC, ACC has a recursive closure binding form, cletrec. However, whereas the FCC cletrec
form requires a monadic form, only accepting closures in value form, the ACC cletrec has a stricter
requirement where the closure must be explicitly constructed inline with only variable references.
This restriction ensures that the translation produces valid FCC cletrec forms without additional
monadic transformations. This is similar to restrictions on letrec in OCaml and standard ML3. In
addition, the translation to ACC by Minamide et al. [1996a] already produces closures in this form.

4.2 From ACC to FCC
The translation from ACC to FCC fixes a representation for closures as flat closures. The main detail
in the translation between ACC and FCC is the change in representation, which intuitively requires
introducing some 𝜂-expansions to mediate between a flat closure record from a code pointer and
an environment record. In practice, these 𝜂-expansions are easily optimized away or altogether
avoided.
3The OCaml Reference: Chapter 12 https://v2.ocaml.org/manual/letrecvalues.html. [Accessed March 2023]
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JΓ; Δ ⊢ 𝑒 ∶ 𝐴K ≜ 𝑒
JΓ; Δ ⊢ 𝑒1 #»𝑒2 ∶ 𝐵K ≜ let 𝑥 = JΓ ⊢ 𝑒1 ∶ #»𝐴 → 𝐵K

in apply (𝜋0 𝑥) is(𝑥)
#                         »

JΓ ⊢ 𝑒2 ∶ 𝐴K
JΓ; Δ ⊢ ⟨⟨𝑒1, 𝑒2⟩⟩ ∶ Clos( #»𝐵 → 𝐶)K ≜ Given Γ; Δ ⊢ 𝑒2 ∶ ⟨ #»𝐴⟩

let 𝑥 = JΓ; Δ ⊢ 𝑒2 ∶ ⟨ #»𝐴⟩K
in let 𝑥0 = 𝜋0 𝑥
⋮

in let 𝑥𝑛 = 𝜋𝑛 𝑥
in clos(fold(rec(JΓ; Δ ⊢ 𝑒1 ∶ Code(⟨ #»𝐴⟩ ∣ #»𝐵 → 𝐶)K,

𝑥0, … , 𝑥𝑛)))
JΓ; Δ ⊢ cletrec

#                            »

𝑥 = ⟨⟨𝑥𝑓, ⟨ #»𝑥𝑣⟩⟩⟩ in 𝑒 ∶ 𝐵K ≜ cletrec
#                                                        »

𝑥 = clos(fold(rec(𝑥𝑓, #»𝑥𝑣))) in JΓ, #         »𝑥 ∶ 𝐴; Δ ⊢ 𝑒 ∶ 𝐵K

Fig. 12. Type-Directed Translation of ACC Expressions to FCC (Excerpts)

Type signatures are modified to the FCC closure representation type, which means that ACC
environments must be reconstructed. The body of every ACC procedure uses an environment
without the code pointer, which causes each projection out of the environment to be off-by-1
when translating the body from ACC to FCC. As we do not know everywhere the environment is
accessed, the simplest way to reconstruct the environment is with the expected interface: a record
only containing the values of free variables. This reconstruction, seen in Figure 11, is a type-directed
translation so that the ACC environment can simply be reconstructed based on its type. We take
the first to 𝑛 + 1 projections of the FCC environment 𝑥̂ (a fresh parameter name) to reconstruct the
environment representation as a record containing the values of free variables. We then let-bind
the record to the previous environment parameter name 𝑥. Inside the let-binding, i.e., the body of
the procedure, 𝑥 will have the expected representation for an ACC record.

Whereas in a procedure body we reconstruct the environment without the code pointer, at
environment creation, we do the opposite: reconstructing the environment with the code pointer
to fit the closure representation of FCC, as seen in Figure 12. Once the ACC environment 𝑒2 is
translated to an FCC record, we can create a closure in FCC. We construct the closure representation
rec(𝑥𝑐𝑜𝑑𝑒, 𝑥0, … 𝑥𝑛) with the code pointer and values of free variables projected from the translation
of the record 𝑒2, and add the appropriate type casts fold and clos to produce an FCC closure
abstraction.

Translating a closure application requires following the FCC closure calling convention. The
closure is bound to a fresh variable 𝑥, to ensure monadic form, and then the code pointer is projected
out to be applied, with the environment passed as the singleton of the closure represented by 𝑥.
The rest of the arguments are translated and passed as usual.

While this translation appears to introduce substantial overhead, in practice, both of these steps
that reconstruct the different representations of the environment are easy to eliminate by inlining.
Closure conversion produces a procedure that uses the environment in a particular way: on entry,
each free variable is immediately projected out of the environment and bound. Each procedure
has essentially the following form (𝑒𝑛𝑣 .let 𝑥0 = 𝜋0 𝑒𝑛𝑣… 𝑥𝑛 = 𝜋𝑛 𝑒𝑛𝑣 in …), where 𝑥0 …𝑥𝑛 are
the free variables. Constant propagation and inlining then produces the correct projections of the
new representation, where the indices are shifted by one, and produces a procedure of the form
(𝑒𝑛𝑣 .let 𝑥0 = 𝜋1 𝑒𝑛𝑣… 𝑥𝑛 = 𝜋𝑛+1 𝑒𝑛𝑣 in …). Closure conversion also produces environments
that are a record of only references to free variables, for example 𝑒𝑛𝑣 = ⟨𝑥0, … , 𝑥𝑛⟩. We could
formalize this requirement in ACC and FCC, but it only adds unnecessary clutter to the definitions.
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𝐴, 𝐵, 𝐶 ∶∶= ... ∣ Code𝑤𝑘( #»𝐴→𝐵) ∣ Code( #»𝐴→𝐵) ∣ ClosΩ( #»𝐴→𝐵) ∣ Dead
𝑣 ∶∶= ... ∣ closΩ(𝑣) ∣ dead ∣ unknown(𝑣)
Ω ∶∶= ⊥ ∣

#»

𝑙 ∣ ⊤

Fig. 13. FCC Extended Syntax for Optimizations

Alternatively, a direct translation from a source language to FCC would not have this mismatch,
avoiding the issue altogether.

Theorem 4.1. Type preservation
If ⊢ letrec

#        »

𝑥 = 𝑓 in 𝑒 ∶ 𝐵, then ⊢ letrec
#                                     »

𝑥 = JΔ ⊢ 𝑓 ∶ 𝐴K in J∅; Δ ⊢ 𝑒 ∶ 𝐵K ∶ J𝐵K

Proof. Follows by straightforward induction over the source typing derivation. �

5 Closure Optimizations
We implement the optimizations from Section 2 in FCC, demonstrating that FCC is expressive
enough to implement and optimize flat closures, and validate the correctness of optimization. Type
checking in FCC after optimization can be used to validate the optimizations preserve type and
memory safety. We also detail several optimizations that FCC does not yet support. Following Keep
et al. [2012], we implement the optimizations in an order that helps optimizations cascade. An
evaluation of these optimizations within FCC is left as future work (see Section 6).

Many optimizations rely on removing indirection when a procedure is known to be called at
the call sites of a closure. As is standard, we formalize several propositions about procedures and
closures. A closure is known if we know the unique procedure reached by calling the closure, which
allows us to eschew the closure abstraction and call the procedure directly. A procedure is known
at a call site if that procedure must be the destination of the call. A procedure is well known if it is
known at every possible call site; a well known procedure need never use the closure abstraction.

To implement these optimizations, we decorate FCC closure and code types with information
representing known and well known information. This allows the optimizations to be defined as
type-directed intra-language rewrites, although a compiler may choose to target FCC in any other
way and still benefit from its type safety.

The decorated syntax for FCC is shown in Figure 13. The FCC closure type Clos( #»𝐴→𝐵) is
annotated with a label set Ω, representing the set of possible procedure values for the closure. Ω
may also be ⊥, to represent a closure that will never be called, or ⊤ to represent any procedure of the
right type. We also decorate the code type Code( #»𝐴→𝐵) with an optional flag 𝑤𝑘, which indicates
that the procedure is well known. We use the flag ? to indicate a procedure that may or may not be
well known. We add a “dead” value and type, representing dead code introduced by optimization,
to be cleaned by another pass. Finally, we add a type-cast unknown to use a known closure in a
more general context. A known closure may become unknown when it escapes, such as when
returned from a procedure. Decorated terms trivially erase to FCC, by removing the annotations
and turning the dead value into an empty record. This decorated syntax, each of the translations,
an erasure function, and several examples (including Figure 14) are all implemented in the Redex
model of FCC in the anonymous supplementary materials.

This information can be generated by a standard analysis. For example, Serrano [1995] provide
an approximation algorithm that decides whether functions are known and well known.

It does not matter whether the annotations are correct; we can rely on the FCC type checker
to validate the output of the optimizations. Incorrect annotations will cause the optimization to
produce ill-typed FCC programs, but this is easily detected by type checking after optimization. We
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argue that if the annotations are correct, then the implementations will always produce well typed
FCC programs.

5.1 Known and Well Known Optimizations
Using the decorated terms, we formalize the known proposition as follows. A closure of type
Clos𝑙( #»𝐴→𝐵), whose label set is a single element, is known. At any call site to a closure of such a type,
the procedure 𝑙 is known at that call site. For example, if the closure 𝑥 has the type Clos𝑙0(Nat→Nat)
at a call site apply (𝜋𝑐 𝑥) (is(𝑥)) 0, then 𝑙0 is known at this call site.

The first optimization removes closure call indirection for procedures known at a call site, and
eliminates closure allocation for well known procedures. This optimization is formalized as the
metafunction J_K𝑘 over typing derivations, where the superscript 𝑘 the (well) known procedure
optimization. We walk through the interesting cases of the definitions; all other cases are recursive
on the subderivations.

When a procedure is known at a call site, we call the procedure directly, eliminating an unneces-
sary memory access to project the code pointer out of the closure. This is defined in the below rule,
where a call site apply (𝜋𝑐 𝑣) (is(𝑣)), #»𝑒 invoking a known closure Δ; Γ ⊢ 𝑣 ∶ Clos𝑙( #»𝐴→𝐵) is opti-
mized to invoke the procedure directly through its code pointer 𝑙 and passes the underlying closure
representation JΔ; Γ ⊢ 𝑣 ∶ Clos𝑙( #»𝐴→𝐵)Kk instead of following the closure calling convention.

JΔ; Γ ⊢ apply (𝜋𝑐 𝑣) (is(𝑣)), #»𝑒 ∶ 𝐵Kk ≜ apply 𝑙 (JΔ; Γ ⊢ 𝑣 ∶ Clos𝑙( #»𝐴→𝐵)Kk),
#                               »

JΔ; Γ ⊢ 𝑒 ∶ 𝐴Kk

where Δ; Γ ⊢ 𝑣 ∶ Clos𝑙( #»𝐴→𝐵)

Since the procedure expects the closure representation, rather than the closure abstraction,
we must remove the closure tag from known closures. We translate a known closure type to its
representation, a recursive record, as show in the below rules. The metafunction J_K𝑘_ defines the
type translation for the optimization. The type of a known closure (Clos𝑙( #»𝐴→𝐵)) is translated to
the the type of the underlying closure representation (𝜇𝛼.Rec(Code?(𝛼, #»𝐴→𝐵), #»𝐶)) gleaned from
the type of the procedure represented by 𝑙. When constructing a known closure, we remove the
closure tag.

JClos𝑙( #»𝐴→𝐵)KkΔ ≜ J𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 )KkΔ
where 𝑙 ∶ Code(𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 ), #»𝐴→𝐵) ∈ Δ

JΔ; Γ ⊢ clos(fold(rec(𝑙, #»𝑣 ))) ∶ Clos𝑙( #»𝐴→𝐵)Kk ≜ JΔ; Γ ⊢ fold(rec(𝑙, #»𝑣 )) ∶ 𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 )Kk

where JClos𝑙( #»𝐴→𝐵)KkΔ = 𝜇𝛼.Rec(Code(𝛼, #»𝐴→𝐵), #»𝐶 )

When a known closure escapes, we must reintroduce the closure tag, as seen in the below rule.
This should never happen to a closure for a well known procedure.

JΔ; Γ ⊢ unknown(𝑣) ∶ ClosΩ( #»𝐴→𝐵)Kk ≜ closΩ(𝑣)
where Δ; Γ ⊢ 𝑣 ∶ Clos𝑙( #»𝐴→𝐵) and Ω ⊋ 𝑙

Now, we formalize the well known closure proposition and define related optimizations. A well
known procedure has type Code𝑤𝑘( #»𝐴→𝐵), where the 𝑤𝑘 flag says that it can never be placed in an
unknown closure. The code pointer of a closure for a well known procedure is unnecessary, since
every call site will invoke it directly through its code pointer, so we remove it, leaving only the free
variables for the procedure in the closure—the closure becomes only an environment. Then, we can
optimize the representation based on the number of free variables. To optimize this representation,
we change the type of the environment, the construction, and projections from it. We define three
cases in our implenentation.

First, if a well known procedure has no free variables, there is no need to allocate or pass the
environment, and it becomes dead code.
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J𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵))KkΔ ≜ Dead
JΔ; Γ ⊢ clos(fold(rec(𝑙))) ∶ Clos𝑙( #»𝐴→𝐵)Kk ≜ dead

where JClos𝑙( #»𝐴→𝐵)KkΔ = Dead
JΔ; Γ ⊢ 𝜋𝑛 unfold(𝑒) ∶ 𝐴Kk ≜ dead

where Δ; Γ ⊢ 𝑒 ∶ 𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), #»𝐶 )
and J𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵))KkΔ = Dead

Second, if a well known procedure has just one free variable (with type 𝐶), then that procedure is
lambda lifted: the free variable is passed instead of the environment, and no allocation is necessary.
We follow Keep et al. [2012] doing this only for the singleton environment, since lambda lifting
larger environments can increase register pressure.

J𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), 𝐶)KkΔ ≜ J𝐶KkΔ
JΔ; Γ ⊢ clos(fold(rec(𝑙, 𝑣))) ∶ Clos𝑙( #»𝐴→𝐵)Kk ≜ JΔ; Γ ⊢ 𝑣 ∶ 𝐶Kk

where JClos𝑙( #»𝐴→𝐵)KkΔ = 𝐶
JΔ; Γ ⊢ 𝜋𝑛 unfold(𝑒) ∶ 𝐴Kk ≜ JΔ; Γ ⊢ 𝑒 ∶ 𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), 𝐶)Kk

where Δ; Γ ⊢ 𝑒 ∶ 𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), 𝐶)
and J𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), 𝐶)KkΔ = 𝐶

Finally, if a closure has two or more arguments (with types
#»𝐶 ), we represent the closure with

a record, but remove the code pointer. Note that the check 𝑙𝑒𝑛𝑔𝑡ℎ( #»𝐶) > 1 distinguishes the case
where there is just one free variable that happens to have a record type from a closure represented
with a record.

J𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), #»𝐶 )KkΔ ≜ Rec(Dead,
#     »

J𝐶KkΔ)
JΔ; Γ ⊢ clos(fold(rec(𝑙, #»𝑣 ))) ∶ Clos𝑙( #»𝐴→𝐵)Kk ≜ rec(

#                               »

JΔ; Γ ⊢ 𝑣 ∶ 𝐶Kk)
where JClos𝑙( #»𝐴→𝐵)KkΔ = Rec( #»𝐶 )

JΔ; Γ ⊢ 𝜋𝑛 unfold(𝑒) ∶ 𝐴Kk ≜ 𝜋𝑛−1 JΔ; Γ ⊢ 𝑒 ∶ 𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), #»𝐶 )Kk

where Δ; Γ ⊢ 𝑒 ∶ 𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), #»𝐶 )
and J𝜇𝛼.Rec(Code𝑤𝑘(𝛼, #»𝐴→𝐵), #»𝐶 )KkΔ = Rec( #»𝐶 )
and 𝑙𝑒𝑛𝑔𝑡ℎ( #»𝐶 ) > 1

The translation presented here makes some assumptions about the syntax of how closure abstrac-
tions are constructed, and how closure environments are accessed, to simplify implementation. The
translation to FCC presented in Section 4 meets both of these assumptions. First, closures abstrac-
tions are assumed to be constructed with the syntax (clos(fold(rec(𝑙, #»𝑣 )))), to simplify modifying
the underlying representation for closures of well known procedures. Similarly, the translation
assumes that closure environments are accessed with the syntax (𝜋𝑛 unfold(𝑒𝑛𝑣)) inside procedure
bodies.

We conjecture that, if the annotations on closures are correct, then applying the known and well
known procedure optimizations to a well typed FCC program should result in a well typed FCC
program. Essentially, the known procedure optimization statically removes the clos, accept-clos,
and is type casts, and statically evaluates the clos-proj along paths where the underlying closure
representation is known.This statically transformswhat would evaluate by 𝛽−𝑐𝑙𝑜𝑠 to something that
evaluates by 𝛽. By subject reduction, we know the term at the call site after reduction is well typed,
and since the procedure is known at the call site, it’s easy to rebuild the typing derivation using
Rule Apply without Rule Accept-Clos, Rule Clos-Proj, or Rule Decl-Clos. The operator is changed to
the procedure directly, and the first argument is changed to be the concrete representation of the
closure rather than a singleton closure. For a well known procedure, since we know all call sites for
the closure, we rewrite the entire typing derivation as described above, resulting in the closure
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becoming dead code. We also rewrite the derivation at the procedure definition, changing the type
of the environment as described in the implementation. Since we change both the type and the
access to the environment, its easy to check the modified procedure definition is still well typed.

5.2 Eliminating Unnecessary Free Variables
Dead Code Elimination. Known procedure optimizations may remove the need for a closure,

creating a dead free variable that can be removed from other closures. Dead code elimination is a
standard optimization, so we do not discuss the implementation here.

Self Recursive Closures. A recursive procedure need not have its own closure as a free variable, as
its closure is the environment argument. Instead of including a self reference in its environment,
we can replace the self reference inside the procedure body with the environment. We can detect
this case by looking for known closures of 𝑙, values with the type Clos𝑙( #»𝐴→𝐵), in the closure
environment for the procedure 𝑙. Since these closures are not necessary, we mark them as dead
code, as seen in the second rule below. Similarly, when constructing a closure, if we find that any
of the environment values are known closures of the procedure we are constructing the closure for
(i.e., have the type Clos𝑙( #»𝐴→𝐵)), then we mark it as dead.

The translation J𝐴Ksr(𝑙) performs the self recursive closure elimination optimization over types.
The argument 𝑙 is the label of the procedure whose type is being translated. In the first translation
rule, we inspect each parameter type of a procedure, and in the second rule, mark as dead any
parameter whose type indicates that it represents a known closure of 𝑙.

JCode?(𝜇𝛼.Rec(Code?(𝛼, #»𝐴→𝐵), #»𝐶 ), #»𝐴→𝐵)Ksr(𝑙) ≜ Code?(𝜇𝛼.Rec(Code?(𝛼, #»𝐴→𝐵),
#            »

J𝐶Ksr(𝑙)), #»𝐴→𝐵)
JClos𝑙( #»𝐴→𝐵)Ksr(𝑙) ≜ Dead

The translation JΔ; Γ ⊢ 𝑒 ∶ 𝐴Ksr(𝑙1, 𝑙2, 𝑥) performs the self recursive closure elimination opti-
mization over expression type derivations. The translation on expression type derivations takes 3
arguments: 𝑙1, the known procedure of a closure; 𝑙2, the current procedure; and 𝑥, the parameter
name of the procedure’s enviroment. In the first rule, the translation is applied recursively to each
of the subterms of the closure, with 𝑙1 being set to the known label of the closure being constructed.
In the second rule, any value representing a known closure over 𝑙1 represents a self recursive
closure and gets marked as dead code.

JΔ; Γ ⊢ clos(fold(rec(𝑙1, #»𝑣 ))) ∶ Clos𝑙1( #»𝐴→𝐵)Ksr(_, 𝑙2, 𝑥) ≜ clos(fold(rec(𝑙1,
#                                                   »

JΔ; Γ ⊢ 𝑣 ∶ 𝐶Ksr(𝑙1, 𝑙2, 𝑥))))
JΔ; Γ ⊢ 𝑣 ∶ Clos𝑙1( #»𝐴→𝐵)Ksr(𝑙1, 𝑙2, 𝑥) ≜ dead

In the body of a procedure 𝑙2, if we ever project a known closure for 𝑙2 (i.e., a closure with the
type Clos𝑙2( #»𝐴→𝐵)) out of the environment 𝑥, we can instead construct the same closure abstraction
by closing over the environment 𝑥, eliminating a memory access, as shown in the below rule.

JΔ; Γ ⊢ 𝜋𝑛 unfold(𝑥) ∶ Clos𝑙2( #»𝐴→𝐵)Ksr(_, 𝑙2, 𝑥) ≜ clos(𝑥)

As with the translation for the known and well known optimizations, all the remaining cases
simply apply the translation recursively to the sub-derivations and rebuild the original term.

We conjecture this is type preserving as well. A self recursive procedure has its own closure in
its closure environment. Since the known closure has the same type as itself as the environment
parameter (up to folding the recursive type and the closure tag), we can substitute all projections
of the closure from the environment with the environment parameter itself, appropriately tagged.
Then, any field of the procedure’s environment parameter whose type indicates that it is a known
closure of the recursive procedure will never be projected out, so it becomes dead code.
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Mutually Recursive Closures. Similar to the self recursive closure elimination optimization, if a
set of mutually recursive procedures only have each others’ closures as free variables, then the
closures are not necessary. However, if even one of the procedures has another free variable that it
does use, then all the closures are necessary: the first closure to contain the free variable, and the
rest of the closures to contain the first closure with its useful information.

The translation JΔ; Γ ⊢ 𝑒 ∶ 𝐴Kmr(
#»

𝑙 ) performs the mutually recursive closure elimination
optimization over expression type derivations. It expects a set of labels

#»

𝑙 , instead of a single label,
and any known closure for any of the procedures in the set of labels can be optimized to a closure
over just the label (and dead code).

If these closures over just the labels could be allocated statically, then they would not add any
allocation or record initialization overhead, while eliminating the reads on every recursive call.
However, this is not currently expressible in FCC, as discussed further in Subsection 5.4.

JCode?(𝜇𝛼.Rec(Code?(𝛼, #»𝐴→𝐵), #»𝐶 ), #»𝐴→𝐵)Kmr(
#»

𝑙 ) ≜ Code?(𝜇𝛼.Rec(Code?(𝛼, #»𝐴→𝐵),
#                 »

J𝐶Kmr(
#»

𝑙 )), #»𝐴→𝐵)
JClos𝑙( #»𝐴→𝐵)Kmr(

#»

𝑙 ) ≜ Dead where 𝑙 ∈
#»

𝑙
JΔ; Γ ⊢ clos(fold(rec(𝑙2, #»𝑣 ))) ∶ Clos𝑙2( #»𝐴→𝐵)Kmr(

#»

𝑙 ) ≜ clos(fold(rec(𝑙2,
#                                           »

JΔ; Γ ⊢ 𝑣 ∶ 𝐶Kmr(
#»

𝑙 ))))
where 𝑙2 ∈

#»

𝑙
JΔ; Γ ⊢ 𝑣 ∶ Clos𝑙2( #»𝐴→𝐵)Kmr(

#»

𝑙 ) ≜ dead where 𝑙2 ∈
#»

𝑙
JΔ; Γ ⊢ 𝜋𝑛 𝑒 ∶ Clos𝑙2( #»𝐴→𝐵)Kmr(

#»

𝑙 ) ≜ clos(fold(rec(𝑙2,
#      »

dead)))
where 𝑙2 ∈

#»

𝑙 and length( #      »

dead) = length( #»𝐴)

Like the other optimizations, we conjecture that this is type preserving.The argument is similar to
that of self recursive closures: we can replace projecting a known closure from the environment with
a freshly constructed one of the same type. Then, each of the recursive closures in the environment
is unused, so we mark them as dead code. Since we only change the types of unused values, the
transformation is type preserving.

5.3 Sharing Closures
In some cases, a group of closures can be optimized to a single closure to reduce allocations, further
discussed by Keep et al. [2012]. The group of closures must share the same free variable values
and require at most one code pointer. A group of closures requiring at most one code pointer
can be found after the well known and known optimizations are applied, e.g., at most one of the
closures is for a procedure that is not well known. We do not formalize this optimization in FCC
as it requires complex graph-based reasoning outside the scope of FCC; however, we show FCC’s
closure abstraction and representation can type check such an optimization through a concrete
example.

We show an example program after the well known and known optimizations have been applied
on the left side of Figure 14. The program has three procedures 𝑝1, 𝑝2, and 𝑝3, and three closures
𝑓1, 𝑓2, 𝑓3. Suppose that the procedures 𝑝1 and 𝑝2 are well known, but 𝑝3 is not (𝑝3 is in fact well
known in this example, but it is simplified for clarity). The program cannot call the procedure 𝑝3
directly and must go through the closure 𝑓3. The known closures 𝑓1 and 𝑓2, and 𝑓3 all have the
same enviroment. We can optimize this to instead allocate a single closure temp, shown on the right
side of Figure 14. Because the group of closures only require one code pointer for the procedure 𝑝3,
the closure can be shared for calling procedures 𝑝1 and 𝑝2. Since 𝑝1 and 𝑝2 are well known, we can
modify their signatures to accept the same closure representation as the procedure 𝑝3.
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Before
letrec
𝑝1 ∶ Code𝑤𝑘(Rec(Nat,Nat)→Nat)

= 𝜆𝑒𝑛𝑣 . 𝜋0 𝑒𝑛𝑣 + 𝜋1 𝑒𝑛𝑣
𝑝2 ∶ Code𝑤𝑘(Rec(Nat,Nat)→Nat)

= 𝜆𝑒𝑛𝑣 . 𝜋0 𝑒𝑛𝑣 ∗ 𝜋1 𝑒𝑛𝑣
𝑝3 ∶ Code(𝜇𝛼.Rec(Code(𝛼→Nat),Nat,Nat)→Nat)

= 𝜆𝑒𝑛𝑣 . (𝜋1 unfold(𝑒𝑛𝑣)) / (𝜋2 unfold(𝑒𝑛𝑣))
in

let 𝑓1 = rec(𝑣1, 𝑣2) in
let 𝑓2 = rec(𝑣1, 𝑣2) in
let 𝑓3 = clos⊤(fold(rec(𝑝3, 𝑣1, 𝑣2))) in

(apply 𝑝1 𝑓1) + (apply 𝑝2 𝑓2)
+ (apply (𝜋𝑐 𝑓3) is(𝑓3))

After
letrec
𝑝1 ∶ Code𝑤𝑘(𝜇𝛼.Rec(Code(𝛼→Nat),Nat,Nat)→Nat)

= 𝜆𝑒𝑛𝑣 . (𝜋1 unfold(𝑒𝑛𝑣)) + (𝜋2 unfold(𝑒𝑛𝑣))
𝑝2 ∶ Code𝑤𝑘(𝜇𝛼.Rec(Code(𝛼→Nat),Nat,Nat)→Nat)

= 𝜆𝑒𝑛𝑣 . (𝜋1 unfold(𝑒𝑛𝑣)) ∗ (𝜋2 unfold(𝑒𝑛𝑣))
𝑝3 ∶ Code(𝜇𝛼.Rec(Code(𝛼→Nat),Nat,Nat)→Nat)

= 𝜆𝑒𝑛𝑣 . (𝜋1 unfold(𝑒𝑛𝑣)) / (𝜋2 unfold(𝑒𝑛𝑣))
in
+ let 𝑡𝑒𝑚𝑝 = rec(𝑝3, 𝑣1, 𝑣2) in
let 𝑓1 = fold(𝑡𝑒𝑚𝑝) in
let 𝑓2 = fold(𝑡𝑒𝑚𝑝) in
let 𝑓3 = clos⊤(fold(𝑡𝑒𝑚𝑝)) in

(apply 𝑝1 𝑓1) + (apply 𝑝2 𝑓2)
+ (apply (𝜋𝑐 𝑓3) is(𝑓3))

Fig. 14. An example of sharing closures through aliasing

5.4 Optimizations Not Yet Supported in FCC
There are some optimizations from Keep et al. [2012] that FCC cannot yet express, but we conjecture
that all of the optimizations are possible with an extension allowing the (mutual) global static
allocation of data along with procedures. Currently, FCC only allows closed procedures in the global
scope to simplify the mutual induction between well typed expressions, well formed types, and
well formed environments. Extending FCC’s global scope to include other values requires proving
mutual induction between expressions and types is still well defined, which is not immediately
clear because of the dependent type used for our closure abstraction. Mutually inductive dependent
structures, such as mutually inductive indexed type families, are well understood and may provide
a starting point for resolving this detail.

With such an extension, dynamic allocation overhead of closures can be reduced when the
environment only refers to global scope values. Global values do not need to be included in closures
because procedures can refer to these values directly. A closure 𝑐 can be promoted to a global scope
when it only refers to other globally scoped values. Once a closure 𝑐 is a global value, any references
to 𝑐 in other closures are no longer necessary and can be removed, causing cascading optimizations
that possibly promote more closures.

In Section 5.2, we saw that a group of mutually recursive closures with no free variables other
than the other closures in the group can be optimized into closures containing just the label of
the target procedure. We could further optimize this by statically allocating each of the closures,
instead of re-allocating a closure for each mutually recursive call. However, static allocation in this
form is not currently supported by FCC.

Figure 15 shows an example from Keep et al. [2012], with the left side showing two mutually
recursive procedures evenp and oddp, with mutually recursive closures evenc and oddc defined
using cletrec (note that the known procedure optimization is not performed in this example for
clarity). We can optimize the mutually recursive procedures and closures together to a version of
FCC with static global allocation of closures mutually defined with procedures. The result of this
potential optimization is shown on the right of Figure 15. The closures 𝑒𝑣𝑒𝑛𝑐 and 𝑜𝑑𝑑𝑐 may still be
necessary, but are now statically allocated ahead of time. Since the closures 𝑒𝑣𝑒𝑛𝑐 and 𝑜𝑑𝑑𝑐 do not
need to hold references to each other after static allocation, we can optimize the allocation of the
closures to only include each respective code pointer. The procedures 𝑒𝑣𝑒𝑛𝑝 and 𝑜𝑑𝑑𝑝 can then be
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Before
letrec

𝑒𝑣𝑒𝑛𝑝, 𝑜𝑑𝑑𝑝 ∶ Code((𝜇𝛼.Rec(Code(𝛼,Nat→Nat),
Clos(Nat→Nat)),

Nat)→Nat)
𝑒𝑣𝑒𝑛𝑝 = 𝜆𝑒𝑛𝑣 , 𝑥.

− let 𝑔 = 𝜋1 𝑒𝑛𝑣 in
(𝑥 = 0) or (apply 𝜋𝑐 𝑔 is(𝑔) ( − 𝑥 1))

𝑜𝑑𝑑𝑝 = 𝜆𝑒𝑛𝑣 , 𝑥.
− let 𝑔 = 𝜋1 𝑒𝑛𝑣 in

(not(apply 𝜋𝑐 𝑔 is(𝑔), 𝑥))
in
− cletrec

𝑒𝑣𝑒𝑛𝑐 ∶ Clos𝑒𝑣𝑒𝑛𝑝(Nat→Nat)
− = clos𝑒𝑣𝑒𝑛𝑝(fold(rec(𝑒𝑣𝑒𝑛𝑝, 𝑜𝑑𝑑𝑐)))

𝑜𝑑𝑑𝑐 ∶ Clos𝑜𝑑𝑑𝑝(Nat→Nat)
− = clos𝑜𝑑𝑑𝑝(fold(rec(𝑜𝑑𝑑𝑝, 𝑒𝑣𝑒𝑛𝑐)))

in apply 𝜋𝑐 𝑒𝑣𝑒𝑛𝑐 (is(𝑒𝑣𝑒𝑛𝑐), 10)

After (not currently expressible in FCC)
letrec

𝑒𝑣𝑒𝑛𝑝, 𝑜𝑑𝑑𝑝 ∶ Code((𝜇𝛼.Rec(Code(𝛼,Nat→Nat),
Dead),

Nat)→Nat)
𝑒𝑣𝑒𝑛𝑝 = 𝜆𝑒𝑛𝑣 , 𝑥.

(𝑥 = 0) or (apply 𝜋𝑐 𝑜𝑑𝑑𝑐 is(𝑜𝑑𝑑𝑐) ( − 𝑥 1))
𝑜𝑑𝑑𝑝 = 𝜆𝑒𝑛𝑣 , 𝑥.

(not(apply 𝜋𝑐 𝑒𝑣𝑒𝑛𝑐 (is(𝑒𝑣𝑒𝑛𝑐), 𝑥)))

𝑒𝑣𝑒𝑛𝑐 ∶ Clos𝑒𝑣𝑒𝑛𝑝(Nat→Nat)
+ = clos𝑒𝑣𝑒𝑛𝑝(fold(rec(𝑒𝑣𝑒𝑛𝑝)))
𝑜𝑑𝑑𝑐 ∶ Clos𝑜𝑑𝑑𝑝(Nat→Nat)

+ = clos𝑜𝑑𝑑𝑝(fold(rec(𝑜𝑑𝑑𝑝)))
in apply 𝜋𝑐 𝑒𝑣𝑒𝑛𝑐 (is(𝑒𝑣𝑒𝑛𝑐), 10)

Fig. 15. (Conjecture) Mutually Recursive Procedures After a Static Allocation Optimization

optimized to call each other through the statically allocated closures, rather than from the dynamic
closure environment argument.

6 Related and Future Work
Abstract Closure Optimizations in TIL. The TIL project used a typed intermediate language

to compile ML, including abstract closure conversion in their typed closure IL [Morrisett 1995;
Tarditi 1996; Tarditi et al. 1996]. While TIL performed well against the SML/NJ compiler at the
time, it lacks some of the optimizations we discuss. TIL lambda-lifts well known functions, only
closure converting escaping functions. It uses a pair representation of a closure, not the flat closure
representation of FCC. We infer that TIL does not support the known function optimizations
we discuss, and requires reallocating escaping recursive closures. TIL is only described at a high
level, but is based on the formalism of Minamide et al. [1996a], which does not support these
optimizations. TIL does model global variables, and avoids including them in closures.

Polymorphism and Closure Conversion. In the typed closure conversion work of Minamide et al.
[1996a] and Morrisett et al. [1999], the goal was to support closure conversion from System F,
which requires supporting polymorphism in the source language. Both projects use the existential
type abstraction and representation described in Section 2, but they differ in their interpretation of
polymorphism and how type variables interact with closures.

Minamide et al. [1996a] use a type passing interpretation of polymorphism, which requires a
complex typing of closures to account for capturing free type variables, which also appear in the
type of the procedure. Minamide et al. [1996a] use separate type and value environments as part
of closures. In this approach, types may need to be projected out of the type environment, but
the type environment is hidden behind the existential type, which means it cannot be projected
from. Their solution is to use a translucent function type, a kind of singleton type restricted to
parameter position on functions, allowing values from the type environment to be used in the type.
As their approach uses a singleton type and FCC has a singleton type, we conjecture that FCC can
be extended to handle type-passing polymorphism and this style of closure conversion.
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By contrast, Morrisett et al. [1999] use a type erasure strategy, which simplifies the typing of
procedures and closures, but may restrict the way type variables are used at run time. Typically,
type erasure prevents an intensional interpretation of polymorphism, which precludes a number
of optimizations, such as those discussed by Leroy [1992]. On the other hand, Crary et al. [2002]
present a framework supporting intensional polymorphism with type erasure. A typed erasure
interpretation does not affect closure conversion at all, so FCC could be extended with standard
polymorphic type constructs for this style of closure conversion, and would not require additional
complexity for encoding the type environment.

Explicit Allocation. Thenext pass in a type-preserving compiler is allocation, following the System
F to TAL compiler [Morrisett et al. 1999]. In this compiler pass, records are explicitly allocated in
memory and then initialized, as follows.

J⟨e1, e2...⟩ ∶ Rec(A1,A2, ...)K
def= let y =malloc JA1K , JA2K , ... in

let y1 = y[1]← Je1K in
⋯
let yn = yn−1[n]← JenK in
yn

The allocation pass changes the representation of closures in FCC to a location in memory, where
the first cell contains the code pointer, and subsequent cells are the values for the environment.
All other syntactic constructs, including our closure abstraction, would be translated to the same
syntactic construct in the target language. The target language must have the same abstractions for
closures as FCC to preserve the abstractions (and thus types).

The main challenge in extending type preservation from FCC to explicit allocation is our use of
the singleton type, a dependent type. Explicit allocation necessarily introduces effects, which can
be difficult to combine with dependent types.

Effects. Effects can introduce two problems for FCC.
First, effects such as allocation and mutability cause inconsistencies when mixed with dependent

types; this is well known, and described well by Pédrot and Tabareau [2020]. In particular, effects
can disrupt subject reduction, since a type may depend on a value, which could change due to effects.
However, we conjecture FCC can be extended with these effects and maintain subject reduction,
because of the value restrictions we introduce on the singleton type. While the underlying values in
the environment of a closure may change, we will only depend on the immutable label identifying
that closure. We will need to ensure that changes to the underlying data do not affect type safety,
but this should be type safe if we do not have strong updates, and if we do not have any additional
computations in our dependent types (such as the ability to dereference a label in the type system).

Second, to closure convert a source language with mutable variables, FCC must be extended with
support for mutability. Dybvig [1987] builds on the work of Cardelli [1984] by supporting mutable
variables in flat closures. Unlike in ML, where the type system ensures that mutable variables are
explicitly boxed by the programmer, Scheme variables may or may not be mutable. Dybvig [1987]
solves this by allocating boxes for mutable free variables in closures, to avoid the substantial cost
of hunting down where the variable originated through the call chain. Box allocation is handled by
callees, as callers do not know which free variables may be mutated. Each procedure constructs a
box for each variable mutated in its body before executing the body.

Dependent Types. We conjecture that our typed closure representation can be modified to work
with for a dependently typed language IL. Bowman and Ahmed [2018] observe that the existential
type for closures does not work to compile a dependently typed source language because it relies
on impredicativity, which conflicts with large elimination and computation relevance (and we
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want closures to be computationally relevant). We do not rely on existential types, avoiding a key
problem with dependent types.

One other problem adapting to dependent types is our use of the recursive type, which could
introduce non-termination and inconsistency into a dependent type theory. However, we conjecture
that the recursive type could be replaced by a ⊤ type and an additional cast operation defined
below. The recursive type enables optimizations of recursive closures, but these optimizations are
not relevant in the dependently typed case due to restrictions on recursion in dependently-typed
languages.

Recall from Section 2 that the recursively closure type is used to enable optimization for recursive
escaping closures. However, escaping recursive references are typically impossible in dependently-
typed languages. Using the standard syntactic guard condition, recursive functions must appear
in operator position and called on a structurally smaller argument, so all recursive closures are
known at their call sites. This means we never have an escaping recursive closure, and never have
the additional allocation overhead.

We conjecture we could cast the code pointer to ⊤, a super type of all types with no elimination
form, when passing a closure as environment. The ensures that no recursion is possible through the
code pointer field of the closure; instead, all recursion must occur directly through the procedure
label. A closure’s representation would have type Rec(Code(Rec(⊤, 𝐶), 𝐴) → 𝐵), while an envi-
ronment would have type Rec(⊤, 𝐶), where the code pointer’s type has been forgotten. The closure
would be cast to an environment with env, defined below, before being passed as the environment,
forgetting the code pointer and breaking the cycle. Other closure typing rules would need to be
slightly modified, such as the accept-clos form.

Γ; Δ ⊢ 𝑒 ∶ Rec(𝐴, ⃖⃗𝐵)

Γ; Δ ⊢ env(𝑒) ∶ Rec(⊤, ⃖⃗𝐵)

Γ; Δ ⊢ 𝑒 ∶ Code(Rec(⊤, ⃖⃗𝐶), ⃖⃖𝐴 → 𝐵)
Γ; Δ ⊢ 𝑣 ∶ Rec(Code(Rec(⊤, ⃖⃗𝐶), ⃖⃖𝐴 → 𝐵), ⃖⃗𝐶)

Γ; Δ ⊢ accept-clos(𝑒) ∶ Code(The(clos(𝑣)), ⃖⃖𝐴 → 𝐵)

Eliminating Abstract Closures. Our representation of closures is still a new custom primitive, but
we would like high-level concepts like a closure to be expressible as a design pattern over general-
purpose type formers. Minamide et al. [1996a] separate closure conversion into two passes: abstract
closure conversion, in which closures are made explicit (but abstract), and closure representation, in
which both closure representation and abstraction are completely encoded with low-level general-
purpose features, particularly pairs, procedure pointers, and the existential type. Our closure
abstraction still relies on a new special purpose primitive type Clos.

We might be able to eliminate the abstract closure type and express all our optimizations with a
different general-purpose type former: row-polymorphic records. Using existential row variables ∃𝜌
to quantify over parts of a record [Harper and Pierce 1991; Morris andMcKinna 2019;Wand 1991a,b],
we could define our closure type as Clos(𝐴⃗) → 𝐵 def= ∃𝜌.𝜇𝛼.Rec((Code(Rec(𝛼|𝜌), 𝐴⃗) → 𝐵)|𝜌). In
this syntax, a record Rec(𝐴⃗|𝜌) contains at least a 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴⃗) entries of types 𝐴⃗, but may contain
some unknown other entries 𝜌. Expressing the closure type requires existential quantification over
row variables. In this view, by hiding the environment row, there should be only two operations
possible: project out the code pointer, and call the code pointer on the closure and its arguments.

However, this reintroduces existential quantification over types, and therefore possibly impred-
icativity. If we want to extend this translation to dependent types, we’d like the interpretation of
this to be a second class existential quantification. We must ensure that the existential row variable
does not add impredicativity to the type system, and that it is still computationally irrelevant. Row
polymorphism has been investigated in the context of a restricted class of dependent types lacking
large elimination [Chlipala 2010], but not existential row quantification, and leaves unstudied the
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interaction with impredicativity. Given the unknowns, while abstract closures are known to work
in dependent type theory [Bowman and Ahmed 2018], we leave investigating expressing closure
abstraction as existential row polymorphism for future work.

Performance Evaluation. A limitation in this, and most type-preserving compilation work, is the
lack of performance evaluation. In our work, as is often the case for type preservation, we consider
performance evaluation out of scope for this paper. Before we can implement a type preserving
compiler, we need to know how to design it, after all. Even then, there are many variables that
interfere with a direct comparison between the performance of a compiler designed to use FCC
compared to, e.g., Chez Scheme (in which Keep et al. [2012] implement their optimizations).

The biggest difference is the use of typed ILs. The typed ILs are very likely to decrease compile-
time performance, since they increase the size of program representation during compilation, and
require generating additional annotations to guarantee decidable checking. The typed IL may also
decrease run-time performance for reasons unrelated to the closure conversion itself; even if we
achieve every optimization that Keep et al. [2012] do, types may interfere with other optimizations.
In fact, that’s likely: this work is addressing just such a limitation in past work on type-preserving
compilation! It seems likely there exist similar limitations in passes other than closure conversion.
Given FCC’s correspondence to past work on untyped efficient closures, we think that the main
overhead would be the cost of typechecking during compilation, but it is possible that FCC’s types
inhibit some optimizations that we did not study in this paper.

Themost direct measurement of FCC itself would be to design and implement two type-preserving
compiler differing only in the use of FCC or ACC for closure conversion. However, this requires an
existing theory for FCC, and substantial additional work besides, such as how to preserve types
from FCC to a typed assembly language. Such additional work is clearly necessary for a thorough
investigation of the performance of a type-preserving compiler, but out of scope for the time being.

7 Conclusion
Type preservation offers lightweight correctness guarantees for compilers, but it should not sacrifice
performance. In FCC, we strive to ensure we can express many of the closure optimizations and
the efficient representation used in practice in a typed intermediate language, ensuring safety
and performance. FCC takes lessons from much of the past work on typed closure conversion,
combining ideas that work well to solve individual problems into a single language that solves
many problems. Particularly, FCC combines recursive closure types, recursive code, singleton
types (translucent types), and abstract closure types, paying particular attention to how these are
likely to work with extensions to the language found in the literature. We’re able to validate many
optimizations found in practice as type safe, although there remains some important future work
related to global variables and constants.
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